Evaluation of Multivariate Time-Series Compression Algorithms with TinyML in Embedded Devices
Abstract
Continuous data transmission in automotive applications within the context of the Internet of Things (IoT) faces challenges related to bandwidth and energy consumption. In this scenario, TinyML — the application of machine learning models on low-power devices — emerges as a solution. This paper evaluates two time-series compression algorithms, the Multivariate Parallel Tiny Anomaly Compressor (MPTAC) and the Multivariate Sequential Tiny Anomaly Compressor (MSTAC), focusing on their implementation in embedded devices with limited resources. Through a case study conducted in a real-world scenario, using the OBD-II Edge Freematics One+ device connected to a moving vehicle, the results indicate that MPTAC offers better data reconstruction fidelity, while MSTAC achieves a higher compression rate, but with greater loss of precision. The choice of the ideal algorithm depends on the desired balance between compression and the quality of the reconstructed data.
Keywords:
Internet Of Things, TinyML, Time Series Compression, Embedded Devices, Energy Efficiency
References
Ammar, M., Haleem, A., Javaid, M., Bahl, S., Garg, S. B., Shamoon, A., and Garg, J. (2022). Significant applications of smart materials and Internet of Things (IoT) in the automotive industry. Materials Today: Proceedings, 68, 1542–1549.
Angelov, P. (2014). Anomaly detection based on eccentricity analysis. In 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS), 1–8. IEEE.
Azar, J., Makhoul, A., Couturier, R., and Demerjian, J. (2020). Robust IoT time series classification with data compression and deep learning. Neurocomputing, 398, 222–234.
Bourekkadi, S. (2024). Internet of Things (IoT) applications in the automotive sector. Journal of Theoretical and Applied Information Technology, 102(8).
Cerveñansky, P., Martín, Á., and Seroussi, G. (2024). Compression of multichannel signals with irregular sampling rates and data gaps. IEEE Access.
Chandak, S., Tatwawadi, K., Wen, C., Wang, L., Ojea, J. A., and Weissman, T. (2020). LFZIP: Lossy compression of multivariate floating-point time series data via improved prediction. In 2020 Data Compression Conference (DCC), 342–351. IEEE.
Costa, H., Silva, M., Sánchez-Gendriz, I., Viegas, C. M., and Silva, I. (2024). An evolving multivariate time series compression algorithm for IoT applications. Sensors, 24(22), 7273.
de Amorim, L. F., Pavani, V. A., Alexandre, L. B., Teixeira, P. H., Valentim, S., Serdeira, H., Prado, V., de Farias, C. M., and Delicato, F. C. (2022). Design and implementation of UFRJ Nautilus’ AUV Lua: A TinyML approach. In 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 1–6. IEEE.
Görne, L. G. (2024). Method for high-efficiency data compression and transmission of vehicle measurement data through mobile Internet. Springer.
Kallimani, R., Pai, K., Raghuwanshi, P., Iyer, S., and López, O. L. (2024). TinyML: Tools, applications, challenges, and future research directions. Multimedia Tools and Applications, 83(10), 29015–29045.
Luo, Y., Yao, Y., Chen, J., Lu, S., and Shi, W. (2024). An efficient data transmission framework for connected vehicles. In 2024 IEEE/ACM Symposium on Edge Computing (SEC), 306–320. IEEE.
Medeiros, M., Flores, T., Silva, M., and Silva, I. (2024). A multi-layered methodology for driver behavior analysis using TinyML and edge computing. In 2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), 1–8. IEEE.
Njor, E., Madsen, J., and Fafoutis, X. (2022). A primer for TinyML predictive maintenance: Input and model optimisation. In IFIP International Conference on Artificial Intelligence Applications and Innovations, 67–78. Springer.
Signoretti, G., Silva, M., Andrade, P., Silva, I., Sisinni, E., and Ferrari, P. (2021). An evolving TinyML compression algorithm for IoT environments based on data eccentricity. Sensors, 21(12), 4153.
Signoretti, G., Silva, M., Araujo, J., Guedes, L. A., Silva, I., Sisinni, E., and Ferrari, P. (2020). Performance evaluation of an evolving data compression algorithm embedded into an OBD-II edge device. In 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, 696–701. IEEE.
Tsoukas, V., Gkogkidis, A., Boumpa, E., and Kakarountas, A. (2024). A review on the emerging technology of TinyML. ACM Computing Surveys, 56(10), 1–37.
Yin, X.-X., Miao, Y., and Zhang, Y. (2022). Time series based data explorer and stream analysis for anomaly prediction. Wireless Communications and Mobile Computing, 2022(1), 5885904.
Angelov, P. (2014). Anomaly detection based on eccentricity analysis. In 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS), 1–8. IEEE.
Azar, J., Makhoul, A., Couturier, R., and Demerjian, J. (2020). Robust IoT time series classification with data compression and deep learning. Neurocomputing, 398, 222–234.
Bourekkadi, S. (2024). Internet of Things (IoT) applications in the automotive sector. Journal of Theoretical and Applied Information Technology, 102(8).
Cerveñansky, P., Martín, Á., and Seroussi, G. (2024). Compression of multichannel signals with irregular sampling rates and data gaps. IEEE Access.
Chandak, S., Tatwawadi, K., Wen, C., Wang, L., Ojea, J. A., and Weissman, T. (2020). LFZIP: Lossy compression of multivariate floating-point time series data via improved prediction. In 2020 Data Compression Conference (DCC), 342–351. IEEE.
Costa, H., Silva, M., Sánchez-Gendriz, I., Viegas, C. M., and Silva, I. (2024). An evolving multivariate time series compression algorithm for IoT applications. Sensors, 24(22), 7273.
de Amorim, L. F., Pavani, V. A., Alexandre, L. B., Teixeira, P. H., Valentim, S., Serdeira, H., Prado, V., de Farias, C. M., and Delicato, F. C. (2022). Design and implementation of UFRJ Nautilus’ AUV Lua: A TinyML approach. In 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 1–6. IEEE.
Görne, L. G. (2024). Method for high-efficiency data compression and transmission of vehicle measurement data through mobile Internet. Springer.
Kallimani, R., Pai, K., Raghuwanshi, P., Iyer, S., and López, O. L. (2024). TinyML: Tools, applications, challenges, and future research directions. Multimedia Tools and Applications, 83(10), 29015–29045.
Luo, Y., Yao, Y., Chen, J., Lu, S., and Shi, W. (2024). An efficient data transmission framework for connected vehicles. In 2024 IEEE/ACM Symposium on Edge Computing (SEC), 306–320. IEEE.
Medeiros, M., Flores, T., Silva, M., and Silva, I. (2024). A multi-layered methodology for driver behavior analysis using TinyML and edge computing. In 2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), 1–8. IEEE.
Njor, E., Madsen, J., and Fafoutis, X. (2022). A primer for TinyML predictive maintenance: Input and model optimisation. In IFIP International Conference on Artificial Intelligence Applications and Innovations, 67–78. Springer.
Signoretti, G., Silva, M., Andrade, P., Silva, I., Sisinni, E., and Ferrari, P. (2021). An evolving TinyML compression algorithm for IoT environments based on data eccentricity. Sensors, 21(12), 4153.
Signoretti, G., Silva, M., Araujo, J., Guedes, L. A., Silva, I., Sisinni, E., and Ferrari, P. (2020). Performance evaluation of an evolving data compression algorithm embedded into an OBD-II edge device. In 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, 696–701. IEEE.
Tsoukas, V., Gkogkidis, A., Boumpa, E., and Kakarountas, A. (2024). A review on the emerging technology of TinyML. ACM Computing Surveys, 56(10), 1–37.
Yin, X.-X., Miao, Y., and Zhang, Y. (2022). Time series based data explorer and stream analysis for anomaly prediction. Wireless Communications and Mobile Computing, 2022(1), 5885904.
Published
2025-05-19
How to Cite
MEDEIROS, Morsinaldo; COSTA, Hagi; SILVA, Marianne; SILVA, Ivanovitch.
Evaluation of Multivariate Time-Series Compression Algorithms with TinyML in Embedded Devices. In: URBAN COMPUTING WORKSHOP (COURB), 9. , 2025, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 113-126.
ISSN 2595-2706.
DOI: https://doi.org/10.5753/courb.2025.8828.
