Integrating AI-Enhanced Industrial IoT Ecosystems with FIWARE for Smart Cities: A Scalable Enterprise Solution
Resumo
This study explores how the FIWARE and SAMANAU1 platforms can be integrated to strengthen IoT ecosystems in smart cities and industrial applications. The proposed architecture leverages open standards, machine learning, and cloud, fog, and edge computing to enable solutions such as smart city dashboards, public infrastructure monitoring, and environmental sensor networks. The key benefits include greater scalability, interoperability, and real-time decision-making capabilities. Comparative analyses demonstrate that open-source approaches offer advantages over proprietary systems by reducing costs and fostering innovation. This work highlights the importance of FIWARE in advancing commercial IoT solutions for more sustainable urban and industrial development.
Palavras-chave:
Industrial Internet of Things (IioT), FIWARE-based Architectures, Smart City Applications, AI Integration in IoT Systems, Systems Interoperability
Referências
Anthropic (2025). Model context protocol (MCP). [link]. Acessado em 26/03/2025.
Barriga, J. A., Clemente, P. J., Hernández, J., & Pérez-Toledano, M. A. (2022). SimulateIoT-FIWARE: Domain specific language to design, code generation and execute IoT simulation environments on FIWARE. IEEE Access, 10, 7800–7820.
Bauer, M. (2022). Fiware: Standard-based open source components for cross-domain IoT platforms. In 2022 IEEE 8th World Forum on Internet of Things (WF-IoT) (pp. 1–6).
Berbes Villalón, D. M., Sánchez Jiménez, L., De la Iglesia Campos, M., Dı́az Aguirre, M. E., & Delgado Fernández, T. (2022). An IoT architecture for smart cities based on the FIWARE platform. RECyT, 24(38), 20–27.
Cai, H., Xu, B., Jiang, L., & Vasilakos, A. V. (2017). IoT-based big data storage systems in cloud computing: Perspectives and challenges. IEEE Internet of Things Journal, 4(1), 75–87.
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., da P. Francisco, R., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
FIWARE Foundation. (2025). NGSI v2 Specification. [link]. Acessado em 26/03/2025.
Shwe, T., & Aritsugi, M. (2024). Optimizing data processing: A comparative study of big data platforms in edge, fog, and cloud layers. Applied Sciences, 14(1).
Sousa, P. R., Magalhães, L., Resende, J. S., Martins, R., & Antunes, L. (2021). Provisioning, authentication and secure communications for IoT devices on FIWARE. Sensors, 21(17).
Souto, M. (2017). Gestão de inovação em startup de rede de coleta de dados sem fio, multipropósito e modular: Estudo de caso de um spin-off de pesquisa da plataforma Samanaú. Dissertação de mestrado, Universidade Federal do Rio Grande do Norte.
Vashi, S., Ram, J., Modi, J., Verma, S., & Prakash, C. (2017). Internet of things (IoT): A vision, architectural elements, and security issues. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (pp. 492–496).
Zanella, A., Bui, N., & Castellani, A. (2014). Internet of things for smart cities. IEEE IoT Journal, 1, 22–32.
Zyrianoff, I., Heideker, A., Sciullo, L., Kamienski, C., & Di Felice, M. (2021). Inter-operability in open IoT platforms: WoT-FIWARE comparison and integration. In SMART-COMP 2021 – IEEE International Conference on Smart Computing (pp. 169–174). Piscataway, NJ: IEEE.
Barriga, J. A., Clemente, P. J., Hernández, J., & Pérez-Toledano, M. A. (2022). SimulateIoT-FIWARE: Domain specific language to design, code generation and execute IoT simulation environments on FIWARE. IEEE Access, 10, 7800–7820.
Bauer, M. (2022). Fiware: Standard-based open source components for cross-domain IoT platforms. In 2022 IEEE 8th World Forum on Internet of Things (WF-IoT) (pp. 1–6).
Berbes Villalón, D. M., Sánchez Jiménez, L., De la Iglesia Campos, M., Dı́az Aguirre, M. E., & Delgado Fernández, T. (2022). An IoT architecture for smart cities based on the FIWARE platform. RECyT, 24(38), 20–27.
Cai, H., Xu, B., Jiang, L., & Vasilakos, A. V. (2017). IoT-based big data storage systems in cloud computing: Perspectives and challenges. IEEE Internet of Things Journal, 4(1), 75–87.
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., da P. Francisco, R., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
FIWARE Foundation. (2025). NGSI v2 Specification. [link]. Acessado em 26/03/2025.
Shwe, T., & Aritsugi, M. (2024). Optimizing data processing: A comparative study of big data platforms in edge, fog, and cloud layers. Applied Sciences, 14(1).
Sousa, P. R., Magalhães, L., Resende, J. S., Martins, R., & Antunes, L. (2021). Provisioning, authentication and secure communications for IoT devices on FIWARE. Sensors, 21(17).
Souto, M. (2017). Gestão de inovação em startup de rede de coleta de dados sem fio, multipropósito e modular: Estudo de caso de um spin-off de pesquisa da plataforma Samanaú. Dissertação de mestrado, Universidade Federal do Rio Grande do Norte.
Vashi, S., Ram, J., Modi, J., Verma, S., & Prakash, C. (2017). Internet of things (IoT): A vision, architectural elements, and security issues. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (pp. 492–496).
Zanella, A., Bui, N., & Castellani, A. (2014). Internet of things for smart cities. IEEE IoT Journal, 1, 22–32.
Zyrianoff, I., Heideker, A., Sciullo, L., Kamienski, C., & Di Felice, M. (2021). Inter-operability in open IoT platforms: WoT-FIWARE comparison and integration. In SMART-COMP 2021 – IEEE International Conference on Smart Computing (pp. 169–174). Piscataway, NJ: IEEE.
Publicado
19/05/2025
Como Citar
MEDEIROS JR., Valério G. de et al.
Integrating AI-Enhanced Industrial IoT Ecosystems with FIWARE for Smart Cities: A Scalable Enterprise Solution. In: WORKSHOP DE COMPUTAÇÃO URBANA (COURB), 9. , 2025, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 237-250.
ISSN 2595-2706.
DOI: https://doi.org/10.5753/courb.2025.9520.
