Epidemiology: Analysis And Construction Of A Mathematical And Computational Model In Complex Systems For The COVID-19 Pandemic

  • Luan Crisostomo Pinto IFFluminense
  • Maria Luiza Rodrigues Defante IFFluminense
  • Rodrigo Lacerda da Silva IFFluminense


The textbook mathematical model in epidemiology - SIS (Susceptible-Infected-Susceptible) provided the basis for proposing a new and improved model based on the observable behaviors of the current Covid-19 pandemic. The goal of this study was to analyze the behavior of the system and the influence of the LockDown factor on infected individuals. The model proposed here, called SIERDASHQ (Susceptible - Infected - Exposed - Recovered - Deceased - Asymptomatic - Symptomatic - Hospitalized - Quarantined), was simulated with values that expressed the situation of the pandemic at the national level, making it possible to compare data to the graphics produced by the program, which confirms the validity of the model.


Deng, B., Niu, Y., Xu, J., Rui, J., Lin, S., Zhao, Z., Yu, S., Guo, Y., Luo, L., Chen, T., & Li, Q. (2022). Mathematical Models Supporting Control of COVID-19. China CDC Weekly, 4(40), 895–901.

Caccavo, D. (2020). Chinese and Italian COVID-19 outbreaks can be correctly described by a modified SIRD model. MedRxiv, 2020.

Gomes, S. C. P., Monteiro, I. O., & Rocha, C. R. (2020). Modelagem dinâmica da COVID-19 com aplicação a algumas cidades brasileiras. Revista Thema, 18, 1-25.

Mata, A. S., & Dourado, S. M. (2021). Mathematical modeling applied to epidemics: an overview. Sao Paulo Journal of Mathematical Sciences, 15, 1025-1044.

Luiz, M. H. R. (2012). Modelos matemáticos em epidemiologia. Dissertação - (Mestrado) - Universidade Estadual Paulista, Instituto De Geociências E Ciências Exatas. 75p.

Secretaria de Estado de Saúde do Rio de Janeiro. (2022). Painel Coronavírus Covid-19. Disponível em: [link].

Sen, D., & Sen, D. (2021). Use of a modified SIRD model to analyze COVID-19 data. Industrial & Engineering Chemistry Research, 60(11), 4251-4260.

Voit, E. O., Martens, H., & Omholt, S. W. (2015). 150 Years of the Mass Action Law. 11(1), e1004012–e1004012. https://doi.org/10.1371/journal.pcbi.1004012.
PINTO, Luan Crisostomo; DEFANTE, Maria Luiza Rodrigues; SILVA, Rodrigo Lacerda da. Epidemiology: Analysis And Construction Of A Mathematical And Computational Model In Complex Systems For The COVID-19 Pandemic. In: ENCONTRO NACIONAL DE COMPUTAÇÃO DOS INSTITUTOS FEDERAIS (ENCOMPIF), 10. , 2023, João Pessoa/PB. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 29-36. ISSN 2763-8766. DOI: https://doi.org/10.5753/encompif.2023.229932.