An Interval Type-2 Maximum Likelihood Fuzzy Clustering Algorithm
Resumo
Este artigo apresenta a proposta de um algoritmo para agrupamento nebuloso baseada no processamento de máxima verossimilhança sobre o fluxo de dados. A metodologia adotada consiste em eliminar problemas de inicialização e iderteminações matemáticas (convergência), relativas à implementação computacional, via análise da norma de distância entre as amostras dos dados e os centros dos agrupamentos, bem como no uso de sistemas nebulosos tipo-2 intervalares para a criação de protótipos realísticos aos agrupamentos. Resultados relacionados ao arupamento de dados benchmark e análise da velocidade de convergência ilustram a eficiência da metodologia proposta em comparação a outros algoritmos de agrupamento apresentados na literatura.Referências
Anderson, D. T., Bezdek, J. C., Popescu, M., and Keller, J. M. (2010). Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Transactions on Fuzzy Systems, 18(5):906-918.
Babuška, R. (1998). Fuzzy modeling for control. 1st edition.
dos Santos Gomes, D. C. and de Oliveira Serra, G. L. (2021). Computational approach for real-time interval type-2 fuzzy kalman filtering and forecasting via unobservable spectral components of experimental data. 32:326-355.
dos Santos Gomes, D. C. and de Oliveira Serra, G. L. (2022). Interval type-2 fuzzy computational model for real time kalman filtering and forecasting of the dynamic spreading behavior of novel coronavirus 2019. ISA Transactions, 124:57-68.
Fisher, R. (1936). Iris data set. url https://archive.ics.uci.edu/ml/datasets/iris.
Fränti, P. and Sieranoja, S. (2018). K-means properties on six clustering benchmark datasets. Applied Intelligence, 48:4743-4759.
Gomes, D. C. d. S. and Serra, G. L. d. O. (2021). Machine learning model for computational tracking and forecasting the covid-19 dynamic propagation. IEEE Journal of Biomedical and Health Informatics, 25(3):615-622.
Gustafson, D. E. and Kessel, W. C. (1978). Fuzzy clustering with a fuzzy covariance matrix. In 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, pages 761-766.
Karagöz, S., Deveci, M., Simic, V., and Aydin, N. (2021). Interval type-2 fuzzy aras method for recycling facility location problems. Applied Soft Computing, 102:107107.
Karnik, N., Mendel, J., and Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6):643-658.
Liang, Q. and Mendel, J. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 8(5):535-550.
Pedrycz, W. and Gomide, F. (2007). Fuzzy Systems Engineering Toward Human-Centric Computing. Jhon Wiley and Sons.
Precup, R.-E., David, R.-C., Roman, R.-C., Szedlak-Stinean, A.-I., and Petriu, E. M. (2021). Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using slime mould algorithm. International Journal of Systems Science, 0(0):1-16.
Rathore, P., Bezdek, J. C., Erfani, S. M., Rajasegarar, S., and Palaniswami, M. (2018). Ensemble fuzzy clustering using cumulative aggregation on random projections. IEEE Transactions on Fuzzy Systems, 26(3):1510-1524.
Ruspini, E. H., Bezdek, J. C., and Keller, J. M. (2019). Fuzzy clustering: A historical perspective. volume 14, pages 45-55.
Trauwaert, E., Kaufman, L., and Rousseeuw, P. (1991). Fuzzy clustering algorithms based on the maximum likelihood priciple. volume 42, pages 213-227.
Zhou, J., Pedrycz, W., Gao, C., Lai, Z., Wan, J., and Ming, Z. (2022). Robust jointly sparse fuzzy clustering with neighborhood structure preservation. IEEE Transactions on Fuzzy Systems, 30(4):1073-1087.
Babuška, R. (1998). Fuzzy modeling for control. 1st edition.
dos Santos Gomes, D. C. and de Oliveira Serra, G. L. (2021). Computational approach for real-time interval type-2 fuzzy kalman filtering and forecasting via unobservable spectral components of experimental data. 32:326-355.
dos Santos Gomes, D. C. and de Oliveira Serra, G. L. (2022). Interval type-2 fuzzy computational model for real time kalman filtering and forecasting of the dynamic spreading behavior of novel coronavirus 2019. ISA Transactions, 124:57-68.
Fisher, R. (1936). Iris data set. url https://archive.ics.uci.edu/ml/datasets/iris.
Fränti, P. and Sieranoja, S. (2018). K-means properties on six clustering benchmark datasets. Applied Intelligence, 48:4743-4759.
Gomes, D. C. d. S. and Serra, G. L. d. O. (2021). Machine learning model for computational tracking and forecasting the covid-19 dynamic propagation. IEEE Journal of Biomedical and Health Informatics, 25(3):615-622.
Gustafson, D. E. and Kessel, W. C. (1978). Fuzzy clustering with a fuzzy covariance matrix. In 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, pages 761-766.
Karagöz, S., Deveci, M., Simic, V., and Aydin, N. (2021). Interval type-2 fuzzy aras method for recycling facility location problems. Applied Soft Computing, 102:107107.
Karnik, N., Mendel, J., and Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6):643-658.
Liang, Q. and Mendel, J. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 8(5):535-550.
Pedrycz, W. and Gomide, F. (2007). Fuzzy Systems Engineering Toward Human-Centric Computing. Jhon Wiley and Sons.
Precup, R.-E., David, R.-C., Roman, R.-C., Szedlak-Stinean, A.-I., and Petriu, E. M. (2021). Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using slime mould algorithm. International Journal of Systems Science, 0(0):1-16.
Rathore, P., Bezdek, J. C., Erfani, S. M., Rajasegarar, S., and Palaniswami, M. (2018). Ensemble fuzzy clustering using cumulative aggregation on random projections. IEEE Transactions on Fuzzy Systems, 26(3):1510-1524.
Ruspini, E. H., Bezdek, J. C., and Keller, J. M. (2019). Fuzzy clustering: A historical perspective. volume 14, pages 45-55.
Trauwaert, E., Kaufman, L., and Rousseeuw, P. (1991). Fuzzy clustering algorithms based on the maximum likelihood priciple. volume 42, pages 213-227.
Zhou, J., Pedrycz, W., Gao, C., Lai, Z., Wan, J., and Ming, Z. (2022). Robust jointly sparse fuzzy clustering with neighborhood structure preservation. IEEE Transactions on Fuzzy Systems, 30(4):1073-1087.
Publicado
28/11/2022
Como Citar
MONTEL, Ben-Hur Matthews Moreno; SERRA, Ginalber Luiz de Oliveira.
An Interval Type-2 Maximum Likelihood Fuzzy Clustering Algorithm. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 19. , 2022, Campinas/SP.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 473-484.
ISSN 2763-9061.
DOI: https://doi.org/10.5753/eniac.2022.226935.