An Interval Type-2 Maximum Likelihood Fuzzy Clustering Algorithm

  • Ben-Hur Matthews Moreno Montel UFMA
  • Ginalber Luiz de Oliveira Serra IFMA

Abstract


This paper presents a proposal for an algorithm for fuzzy clustering based on maximum likelihood processing over the data stream. The adopted methodology consists of eliminating initialization problems and mathematical determinations (convergence), related to the computational implementation, via the analysis of the distance norm between the data samples and the cluster centers, as well as the use of fuzzy type-2 interval systems to create realistic prototypes to clusters. Results related to benchmark data clustering and computational complexity analysis illustrate the efficiency of the proposed methodology compared to other clustering algorithms presented in the literature.

References

Anderson, D. T., Bezdek, J. C., Popescu, M., and Keller, J. M. (2010). Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Transactions on Fuzzy Systems, 18(5):906-918.

Babuška, R. (1998). Fuzzy modeling for control. 1st edition.

dos Santos Gomes, D. C. and de Oliveira Serra, G. L. (2021). Computational approach for real-time interval type-2 fuzzy kalman filtering and forecasting via unobservable spectral components of experimental data. 32:326-355.

dos Santos Gomes, D. C. and de Oliveira Serra, G. L. (2022). Interval type-2 fuzzy computational model for real time kalman filtering and forecasting of the dynamic spreading behavior of novel coronavirus 2019. ISA Transactions, 124:57-68.

Fisher, R. (1936). Iris data set. url https://archive.ics.uci.edu/ml/datasets/iris.

Fränti, P. and Sieranoja, S. (2018). K-means properties on six clustering benchmark datasets. Applied Intelligence, 48:4743-4759.

Gomes, D. C. d. S. and Serra, G. L. d. O. (2021). Machine learning model for computational tracking and forecasting the covid-19 dynamic propagation. IEEE Journal of Biomedical and Health Informatics, 25(3):615-622.

Gustafson, D. E. and Kessel, W. C. (1978). Fuzzy clustering with a fuzzy covariance matrix. In 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, pages 761-766.

Karagöz, S., Deveci, M., Simic, V., and Aydin, N. (2021). Interval type-2 fuzzy aras method for recycling facility location problems. Applied Soft Computing, 102:107107.

Karnik, N., Mendel, J., and Liang, Q. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6):643-658.

Liang, Q. and Mendel, J. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 8(5):535-550.

Pedrycz, W. and Gomide, F. (2007). Fuzzy Systems Engineering Toward Human-Centric Computing. Jhon Wiley and Sons.

Precup, R.-E., David, R.-C., Roman, R.-C., Szedlak-Stinean, A.-I., and Petriu, E. M. (2021). Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using slime mould algorithm. International Journal of Systems Science, 0(0):1-16.

Rathore, P., Bezdek, J. C., Erfani, S. M., Rajasegarar, S., and Palaniswami, M. (2018). Ensemble fuzzy clustering using cumulative aggregation on random projections. IEEE Transactions on Fuzzy Systems, 26(3):1510-1524.

Ruspini, E. H., Bezdek, J. C., and Keller, J. M. (2019). Fuzzy clustering: A historical perspective. volume 14, pages 45-55.

Trauwaert, E., Kaufman, L., and Rousseeuw, P. (1991). Fuzzy clustering algorithms based on the maximum likelihood priciple. volume 42, pages 213-227.

Zhou, J., Pedrycz, W., Gao, C., Lai, Z., Wan, J., and Ming, Z. (2022). Robust jointly sparse fuzzy clustering with neighborhood structure preservation. IEEE Transactions on Fuzzy Systems, 30(4):1073-1087.
Published
2022-11-28
MONTEL, Ben-Hur Matthews Moreno; SERRA, Ginalber Luiz de Oliveira. An Interval Type-2 Maximum Likelihood Fuzzy Clustering Algorithm. In: NATIONAL MEETING ON ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE (ENIAC), 19. , 2022, Campinas/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 473-484. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2022.226935.