Applying Feature Selection Combination in Audios of Whale for Improving Classification

  • Cephas A. S. Barreto UFRN
  • Victor V. Targino UFRN
  • Tales V. de M. Alves UFRN
  • Lucas V. Bazante UFRN
  • Rafael V. R. de Oliveira UFRN
  • Ricardo A. R. do A. Junior UFRN
  • João C. Xavier-Júnior UFRN
  • Anne Magály de P. Canuto UFRN


Audio signal processing has been under investigation for the last decades. The majority of the works found in literature focus on signal analysis and classification. Most of them integrate Machine Learning (ML) algorithms with the audio signal processing techniques. As the performance of any ML algorithm depends on the features of a dataset used for training and testing purposes, using a dataset derived from the extraction of features from an audio is not trivial due to the fact that the correct combination of extraction techniques with the selection of the most relevant attributes needs to take place. In this sense, this paper proposes an empirical analysis on different audio extraction techniques combined with feature selection for improving Whale audio classification. Usually, the application of audio extraction techniques results in poor classification performance. However, the combination of feature selection can achieve better results. The experimental results have been promising, indicating that the idea of combining different audio extraction techniques with feature selection can improve the performance of ML classification algorithms over whales’ audios by 22 percentage points.


Al-Shoshan, A. I. (2006). Speech and music classification and separation: A review. Journal of King Saud University Engineering Sciences, 19(1):95-132.

Bühlmann, P. and Yu, B. (2002). Analyzing bagging. The annals of Statistics, 30(4):927-961.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning ML, 20:273-297.

Costa, R. R., Gorgonio, A. C., da S Barreto, C. A., Lima, D. F., de P Canuto, A. M., and Xavier-Junior, J. C. (2020). Detection of respiratory problems through lung audios using machine learning. Anais do Encontro de Computacao do Oeste Potiguar ECOP/UFERSA (ISSN 2526-7574), (4).

Cutler, A., Cutler, D. R., and Stevens, J. R. (2012). Random forests. In Ensemble machine learning, pages 157-175. Springer.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research, 7:1-30.

Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian classifier under zero-oneloss. Machine Learning ML, 29:103-130.

Frasier, K. E. (2015). Beluga whale (delphinapterus leucas) vocalizations and call classification from the eastern beaufort sea population. The Journal of the Acoustical Society of America, 137(6):3054--3067.

Gardner, M. W. and Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15):2627-2636.

Gharroudi, O. (2017). Ensemble multi-label learning in supervised and semi-supervised settings. Theses, Université de Lyon.

Halkias, X. C., Paris, S., and Glotin, H. (2013). Classification of mysticete sounds using machine learning techniques. The Journal of the Acoustical Society of America, 134(5):3496-3505.

Hollander, M., Wolfe, D. A., and Chicken, E. (2013). Nonparametric statistical methods. John Wiley & Sons.

Jović, A., Brkić, K., and Bogunović, N. (2015). A review of feature selection methods with applications. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 1200-1205.

Karpištšenko, A. (2013). The marinexplore and cornell university whale detection challenge.

Mazhar, S., Ura, T., and Bahl, R. (2007). Vocalization based individual classification of humpback whales using support vector machine. In OCEANS 2007, pages 1-9. IEEE.

McKay, C. (2010). Automatic music classification with jMIR. PhD thesis, McGill University, Montreal, Quebec, Canada.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, London.

Ness, S. R., Symonds, H., Spong, P., and Tzanetakis, G. (2013). The orchive : Data mining a massive bioacoustic archive. CoRR, abs/1307.0589.

Oppenheim, A. (1978). Applications of Digital Signal Processing. Prentice-Hall signal processing series. Prentice-Hall.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(3):81--106.

Sharma, G., Umapathy, K., and Krishnan, S. (2020). Trends in audio signal feature extraction methods. Applied Acoustics, 158:107020.

Silverman, B. and Jones, M. C. (1989). E. fix and j.l. hodges(1951): an important contribution to nonparametric discriminant analysis and density estimation. International Statistical Review, 57(3):233-247.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., et al. (2008). Top 10 algorithms in data mining. Knowledge and information systems, 14(1):1-37.

Xian, Y. (2016). Detection and classification of whale acoustic signals. PhD thesis, Duke University.
BARRETO, Cephas A. S.; TARGINO, Victor V.; ALVES, Tales V. de M.; BAZANTE, Lucas V.; OLIVEIRA, Rafael V. R. de; A. JUNIOR, Ricardo A. R. do; XAVIER-JÚNIOR, João C.; CANUTO, Anne Magály de P.. Applying Feature Selection Combination in Audios of Whale for Improving Classification. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 19. , 2022, Campinas/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 752-762. ISSN 2763-9061. DOI: