Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks

  • Victor Júnio Alcântara Cardoso Universidade Federal de Viçosa
  • Rodrigo Moreira Universidade Federal de Viçosa
  • João Fernando Mari Universidade Federal de Viçosa
  • Larissa Ferreira Rodrigues Moreira Universidade Federal de Viçosa / Universidade Federal de Uberlândia

Resumo


Sickle cell anemia, which is characterized by abnormal erythrocyte morphology, can be detected using microscopic images. Computational techniques in medicine enhance the diagnosis and treatment efficiency. However, many computational techniques, particularly those based on Convolutional Neural Networks (CNNs), require high resources and time for training, highlighting the research opportunities in methods with low computational overhead. In this paper, we propose a novel approach combining conventional classifiers, segmented images, and CNNs for the automated classification of sickle cell disease. We evaluated the impact of segmented images on classification, providing insight into deep learning integration. Our results demonstrate that using segmented images and CNN features with an SVM achieves an accuracy of 96.80%. This finding is relevant for computationally efficient scenarios, paving the way for future research and advancements in medical-image analysis.

Palavras-chave: sickle cell disease, deep learning, convolutional neural networks, conventional classifiers, classification, segmented images

Referências

Aljuaid, A. and Anwar, M. (2022). Survey of Supervised Learning for Medical Image Processing. SN Computer Science, 3(4):292.

Alzubaidi, L., Fadhel, M. A., Al-Shamma, O., Zhang, J., and Duan, Y. (2020). Deep Learning Models for Classification of Red Blood Cells in Microscopy Images to Aid in Sickle Cell Anemia Diagnosis. Electronics, 9(3):427.

Backes, A. R. (2022). Pap-smear image classification by using a fusion of texture features. In 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), volume 1, pages 139–144.

Carmo, N. and Mari, J. (2021). A comparative study of convolutional neural networks for classification of pigmented skin lesions. In Anais do XVII Workshop de Visão Computacional, pages 171–176, Porto Alegre, RS, Brasil. SBC.

Chollet, F. et al. (2015). Keras. https://keras.io.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–297

da Silva, M., Rodrigues, L., and Mari, J. F. (2020). Optimizing data augmentation policies for convolutional neural networks based on classification of sickle cells. In Anais do XVI Workshop de Visão Computacional, pages 46–51, Porto Alegre, RS, Brasil. SBC.

de Faria, L. C., Rodrigues, L. F., and Mari, J. F. (2018). Cell classification using hand-crafted features and bag of visual words. In XIV Workshop de Visão Computacional, Ilhéus, BA, Brazil. WVC.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2Nd Edition). Wiley-Interscience, New York, NY, USA.

Gonzalez-Hidalgo, M., Guerrero-Pena, F., Herold-Garcia, S., Jaume-i Capó, A., and Marrero-Fernández, P. D. (2014). Red blood cell cluster separation from digital images for use in sickle cell disease. IEEE journal of biomedical and health informatics, 19(4):1514–1525.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Book in preparation for MIT Press.

Gual-Arnau, X., Herold-García, S., and Simó, A. (2015). Erythrocyte shape classification using integral-geometry-based methods. Medical & biological engineering & computing, 53(7):623–633.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

Hoffman, R., Benz, E., Silberstein, L., Heslop, H., Anastasi, J., and Weitz, J. (2013). Hematology: Basic Principles and Practice. Churchill Livingstone. Saunders/Elsevier.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR, abs/1704.04861.

Huang, G., Liu, Z., and Weinberger, K. Q. (2016). Densely Connected Convolutional Networks. CoRR, abs/1608.06993.

Kato, G. J., Piel, F. B., Reid, C. D., Gaston, M. H., Ohene-Frempong, K., Krishnamurti, L., Smith, W. R., Panepinto, J. A., Weatherall, D. J., Costa, F. F., et al. (2018). Sickle cell disease. Nature Reviews Disease Primers, 4(1):1–22.

Kavanagh, P. L., Fasipe, T. A., and Wun, T. (2022). Sickle Cell Disease: A Review. JAMA, 328(1):57–68.

Nazir, S., Dickson, D. M., and Akram, M. U. (2023). Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks. Computers in Biology and Medicine, 156:106668.

Paz-Soto, Y., Herold-Garcia, S., Fernandes, L. A. F., and Díaz-Matos, S. (2020). Automatic Classification of Erythrocytes Using Artificial Neural Networks and Integral Geometry-Based Functions. In 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 156–163, Porto de Galinhas, Brazil. IEEE.

Petrović, N., Moyà-Alcover, G., i Capó, A. J., and González-Hidalgo, M. (2020). Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images. Computers in Biology and Medicine, 126:104027.

Ponti, M. A., Ribeiro, L. S. F., Nazare, T. S., Bui, T., and Collomosse, J. (2017). Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. In 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), pages 17–41, Niterói, Brazil. IEEE.

Rodrigues, L. F., Naldi, M. C., and Mari, J. F. (2016). Morphological analysis and classification of erythrocytes in microscopy images. In Anais do XII Workshop de Visão Computacional, Campo Grande, MS, Brazil. WVC.

Rodrigues Moreira, L. F., Moreira, R., Travençolo, B. A. N., and Backes, A. R. (2023). An Artificial Intelligence-as-a-Service Architecture for deep learning model embodiment on low-cost devices: A case study of COVID-19 diagnosis. Applied Soft Computing, 134:110014.

Schwalbe, N. and Wahl, B. (2020). Artificial intelligence and the future of global health. The Lancet, 395(10236):1579–1586.

Wickramasinghe, I. and Kalutarage, H. (2021). Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, 25(3):2277–2293.

Zhou, S. K., Greenspan, H., Davatzikos, C., Duncan, J. S., Van Ginneken, B., Madab-hushi, A., Prince, J. L., Rueckert, D., and Summers, R. M. (2021). A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises. Proceedings of the IEEE, 109(5):820–838.

Zhou, T., Ye, X., Lu, H., Zheng, X., Qiu, S., and Liu, Y. (2022). Dense Convolutional Network and Its Application in Medical Image Analysis. BioMed Research International, 2022:2384830.
Publicado
25/09/2023
CARDOSO, Victor Júnio Alcântara; MOREIRA, Rodrigo; MARI, João Fernando; MOREIRA, Larissa Ferreira Rodrigues. Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 20. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 345-358. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2023.234076.