Three-Layer Denoiser: Denoising Parallel Corpora for NMT Systems

  • Felipe de A. Florencio SiDi
  • Matheus S. de Lacerda SiDi
  • Anderson P. Cavalcanti SiDi
  • Vitor Rolim UFPE

Resumo


In recent years, the field of Machine Translation has witnessed the emergence and growing popularity of Neural Machine Translation (NMT) systems, especially those constructed using transformer architectures. A critical factor in developing an effective NMT model is not just the volume, but also the quality of data. However, removing noise from parallel corpora, which involves the intricacies of two distinct languages, presents a significant challenge. In this paper, we introduce and assess a method for eliminating such noise, known as the Three-layer Denoiser. The first layer of this process, termed textual normalization, involves data cleaning using predetermined rules. The second layer incorporates a text feature extractor and a binary classifier, while the third layer evaluates the quality of sentence pairs using a pre-trained transformer model. Experimental results, obtained from training various NMT models with both clean and raw data, indicate a rise of up to 2.64 BLEU points in the models trained with sentence pairs that were filtered by the Denoiser.

Palavras-chave: neural machine translation (NMT), transformer architectures, data cleaning, three-layer denoiser, corpora denoiser

Referências

Axelrod, A., He, X., and Gao, J. (2011). Domain adaptation via pseudo in-domain data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 355–362, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Bane, F. and Zaretskaya, A. (2021). Selecting the best data filtering method for NMT training. In Proceedings of Machine Translation Summit XVIII: Users and Providers Track, pages 89–97, Virtual. Association for Machine Translation in the Americas.

Bañón, M., Chen, P., Haddow, B., Heafield, K., Hoang, H., Esplà-Gomis, M., Forcada, M. L., Kamran, A., Kirefu, F., Koehn, P., Ortiz Rojas, S., Pla Sempere, L., Ramírez-Sánchez, G., Sarrías, E., Strelec, M., Thompson, B., Waites, W., Wiggins, D., and Zaragoza, J. (2020). ParaCrawl: Web-scale acquisition of parallel corpora. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4555–4567, Online. Association for Computational Linguistics.

Chaudhary, V., Tang, Y., Guzmán, F., Schwenk, H., and Koehn, P. (2019). Low-resource corpus filtering using multilingual sentence embeddings. In Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2), pages 261–266, Florence, Italy. Association for Computational Linguistics.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA. ACM.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., and Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. CoRR, abs/1911.02116.

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and Jégou, H. (2017). Word translation without parallel data. arXiv preprint arXiv:1710.04087.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

El-Kishky, A., Chaudhary, V., Guzmán, F., and Koehn, P. (2020). CCAligned: A massive collection of cross-lingual web-document pairs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020).

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F. (2011). A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4):463–484.

Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition, volume 1, pages 278–282 vol.1.

Junczys-Dowmunt, M. (2018). Dual conditional cross-entropy filtering of noisy parallel corpora. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 888–895, Belgium, Brussels. Association for Computational Linguistics.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield, K., Neckermann, T., Seide, F., Germann, U., Fikri Aji, A., Bogoychev, N., Martins, A. F. T., and Birch, A. (2018). Marian: Fast neural machine translation in C++. In Proceedings of ACL 2018, System Demonstrations, pages 116–121, Melbourne, Australia. Association for Computational Linguistics.

Khayrallah, H. and Koehn, P. (2018). On the impact of various types of noise on neural machine translation. In Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 74–83, Melbourne, Australia. Association for Computational Linguistics.

Koehn, P. and Knowles, R. (2017). Six challenges for neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation, pages 28–39, Vancouver. Association for Computational Linguistics.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.

Lison, P. and Tiedemann, J. (2016). OpenSubtitles2016: Extracting large parallel corpora from movie and TV subtitles. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages 923–929, Portorozˇ, Slovenia. European Language Resources Association (ELRA).

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M., and Zettlemoyer, L. (2020). Multilingual Denoising Pre-training for Neural Machine Translation. Transactions of the Association for Computational Linguistics, 8:726–742.

Moore, R. C. and Lewis, W. (2010). Intelligent selection of language model training data. In Proceedings of the ACL 2010 Conference Short Papers, pages 220–224, Uppsala, Sweden. Association for Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL ’02, page 311–318, USA. Association for Computational Linguistics.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Popović, M. (2015). chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 392–395, Lisbon, Portugal. Association for Computational Linguistics.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language understanding by generative pre-training.

Sharif, P. (2018). Bbc news summary. Last accessed 14 Jan 2022.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. In Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, pages 223–231, Cambridge, Massachusetts, USA. Association for Machine Translation in the Americas.

Soares, F., Moreira, V., and Becker, K. (2018). A large parallel corpus of full-text scientific articles. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018).

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14, page 3104–3112, Cambridge, MA, USA. MIT Press.

Tiedemann, J. (2012). Parallel data, tools and interfaces in OPUS. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pages 2214–2218, Istanbul, Turkey. European Language Resources Association (ELRA).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Wang, W., Watanabe, T., Hughes, M., Nakagawa, T., and Chelba, C. (2018). Denoising neural machine translation training with trusted data and online data selection. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 133–143, Brussels, Belgium. Association for Computational Linguistics.
Publicado
25/09/2023
FLORENCIO, Felipe de A.; LACERDA, Matheus S. de; CAVALCANTI, Anderson P.; ROLIM, Vitor. Three-Layer Denoiser: Denoising Parallel Corpora for NMT Systems. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 20. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 510-524. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2023.234268.