Gene Expression Analysis using Markov Chains extracted from Recurrent Neural Networks
Resumo
This paper presents a new approach for the analysis of microarray data by the use of Recurrent Neural Networks (RNNs) as a time model of the gene regulatory network. Our method extracts a Markov Chain (MC) from a trained RNN and the relations among genes in each MC state. We propose to use the learning ability of RNNs for the automatic construction of the model with the gene interactions represented by the weights and afterwards to use an algorithm to extract these relations in the form of MCs and linear matrices easily visualized in the form of graphs of states and genes. The graph of states show the evolution of the gene expression levels in time while the gene graph shows the dependencies among genes in each Markov state.Referências
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2004). Biologia Molecular da Célula. Artmed, 4 edition.
Almeida, I. L., Pechmann, D. R., and Cechim, A. L. (2006). Markov chain inference from microarray data. 5th Mexican International Conference on Artificial Intelligence, pages 133–141.
Andrews, R., Dietrich, J., and Tickle, A. B. (1995). A survey and critique of techniques for extracting rules from trained artificial neural networks. Technical report, Neurocomputing Research Centre, Australia.
Ball, C., Awad, I., Demeter, J., Gollub, J., Hebert, J., Hernandez-Boussard, T., Jin, H., Matese, J., Nitzberg, M., Wymore, F., et al. (2005). Nucleic acids research, 33(Database Issue):D580.
Brown, M. P. S., Brundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., Ares, M., and Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data by using support vector machines. PNAS, 97 - Part 1:262–267.
Causton, H. C., Quackenbush, J., and Brazma, A. (2003). Microarray. Gene Expression Data Analysis, A Beginner’s Guide. Blackwell Publishing.
Cloete, I. and Zurada, J. M. (2000). Knowledge-Based Neurocomputing. MIT Press.
Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. PNAS, 95:14863–14868.
Giles, C. L., Lawrence, S., and Tsoi, A. C. (2001). Noisy time series prediction using recurrent neural networks and grammatical inference. In Machine Learning, volume 44(1-2), pages 161–183. Springer Netherlands.
Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice-Hall.
Kohane, I., Kho, A., and Butte, A. (2003). Microarrays for an integrative genomics. MIT Press.
Kohonen, T. (1997). Self-organizing maps. Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Manning, C. D. and Schutze, H. (2000). Foundations of Statistical Natural Language Proc. MIT Press.
Pechmann, D. R. and Cechin, A. L. (2004). Representação do comportamento temporal de redes neurais recorrentes em cadeias de markov. In VIII Brazilian Symposium on Neural Neural Networks (SBRN2004), volume 1, pages 1–10.
Pechmann, D. R. and Cechin, A. L. (2005). Comparison of deterministic and fuzzy finite automata extraction methods from jordan networks. In Fifth International Conference on Hybrid Intelligent Systems (HIS’05), pages 437–444.
Almeida, I. L., Pechmann, D. R., and Cechim, A. L. (2006). Markov chain inference from microarray data. 5th Mexican International Conference on Artificial Intelligence, pages 133–141.
Andrews, R., Dietrich, J., and Tickle, A. B. (1995). A survey and critique of techniques for extracting rules from trained artificial neural networks. Technical report, Neurocomputing Research Centre, Australia.
Ball, C., Awad, I., Demeter, J., Gollub, J., Hebert, J., Hernandez-Boussard, T., Jin, H., Matese, J., Nitzberg, M., Wymore, F., et al. (2005). Nucleic acids research, 33(Database Issue):D580.
Brown, M. P. S., Brundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., Ares, M., and Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data by using support vector machines. PNAS, 97 - Part 1:262–267.
Causton, H. C., Quackenbush, J., and Brazma, A. (2003). Microarray. Gene Expression Data Analysis, A Beginner’s Guide. Blackwell Publishing.
Cloete, I. and Zurada, J. M. (2000). Knowledge-Based Neurocomputing. MIT Press.
Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. PNAS, 95:14863–14868.
Giles, C. L., Lawrence, S., and Tsoi, A. C. (2001). Noisy time series prediction using recurrent neural networks and grammatical inference. In Machine Learning, volume 44(1-2), pages 161–183. Springer Netherlands.
Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice-Hall.
Kohane, I., Kho, A., and Butte, A. (2003). Microarrays for an integrative genomics. MIT Press.
Kohonen, T. (1997). Self-organizing maps. Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Manning, C. D. and Schutze, H. (2000). Foundations of Statistical Natural Language Proc. MIT Press.
Pechmann, D. R. and Cechin, A. L. (2004). Representação do comportamento temporal de redes neurais recorrentes em cadeias de markov. In VIII Brazilian Symposium on Neural Neural Networks (SBRN2004), volume 1, pages 1–10.
Pechmann, D. R. and Cechin, A. L. (2005). Comparison of deterministic and fuzzy finite automata extraction methods from jordan networks. In Fifth International Conference on Hybrid Intelligent Systems (HIS’05), pages 437–444.
Publicado
20/07/2009
Como Citar
ALMEIDA, Ígor Lorenzato; PECHMANN, Denise Regina; AMARANTE, Maicon de Brito do; CECHIN, Adelmo Luis.
Gene Expression Analysis using Markov Chains extracted from Recurrent Neural Networks. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 7. , 2009, Bento Gonçalves/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2009
.
p. 1-10.
ISSN 2763-9061.
