Analysis And Recognition Of Pain In 2d Face Images Of Full Term And Healthy Newborns

  • Gilberto F. Teruel FEI
  • Tatiany M. Heiderich UNIFESP
  • Ruth Guinsburg UNIFESP
  • Carlos E. Thomaz UNIFESP


This paper proposes a sequence of computational procedures for detecting, interpreting and classifying patterns in frontal two-dimensional images of faces for automatic recognition of pain in newborns. Using data transformation and extraction of statistical characteristics from a real-life, healthy-term newborn image database, it was possible to interpret and model the subjectivity of trained health professionals, quantifying human knowledge in the task of recognizing pain enabling automatic identification. These results were compared with NFCS based classifications by the same professionals of the same images.


Amaral, V., Figaro-Garcia, C., Gattas, G. J. F., and Thomaz, C. E. (2009). Normalização espacial de imagens frontais de face em ambientes controlados e não-controlados. Periodico Cientifico Eletronico da FATEC Sao Caetano do Sul (FaSCi-Tech), 01:1–13. Acessado em Abril 4, 2017.

Anand, K. and Craig, K. (1996). New perspectives on the definition of pain. Pain, 67:3–6.

Aymar, C. and Coutinho., S. (2008). Fatores relacionados ao uso de analgesia sistêmica em neonatologia. Ver Bras Ter Intensiva, 20:405–415.

Chermont, A. G., Guinsburg, R., Balda, R. C., and Kopelman, B. I. (2003). O que os pediatras conhecem sobre avaliação e tratamento da dor no recém-nascido. Jornal Pediatr. (Rio J.), 79:265–272.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR, pages 886–893.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(7):179–188.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Computer Science and Scientific Computing. Academic Press, Inc., 2nd edition.

Grunau, R. and Craig, K. (1987). Pain expression in neonates: facial action and cry. Pain, 28:395–410.

Grunau, R. E. (2013). Neonatal pain in very preterm infants: Long-term effects on brain,neurodevelopment and pain reactivity. Rambam Maimonides Med J., 25:4.

Guinsburg, R. (1999). Avaliação e tratamento da dor no recém-nascido. Jornal Pediatr. (Rio J.), 60:75–149.

Guinsburg, R. and Cuenca, M. (2010). A linguagem da dor no recém-nascido. Trends Genet., 1:1–5.

Heiderich, T. M., Leslie, A. T. F. S., and Guinsburg, R. (2015). Neonatal procedural pain can be assessed by computer software that has good sensitivity and specificity to detect facial movements. Acta Paediatrica, 104:63–69.

Kazemi, V. and Sullivan, J. (2014). One millisecond face alignment with an ensemble of regression trees. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1867–1874.

Krechel, S. W. and Bildner, J. (1995). Cries: a new neonatal postoperative pain measurement score. initial testing of validity and reliability. Paediatr Anaesth, 5:53–61.

Lawrence, J., Alcock, D., McGrath, P., Kay, J., MacMurray, S., and Dulberg, C. (1993). The development of a tool to assess neonatal pain. Journal of Pain and Symptom Management, 6:59–66.

Luda, D., Nackley, A., Tchivileva, I., Shabalina, S., and Maixner., W. (2007). Genetic architecture of human pain perception. Trends Genet., 23:605–613.

Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., and Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Transactions on Medical Imaging, 18:712–721.

Sagonas, Tzimiropoulos, G., Zafeiriou, S., and Pantic, M. (2013). 300 faces in-the-wild challenge: The first facial landmark localization challenge. Proceedings of IEEE Int’l Conf. on Computer Vision (ICCV-W), 300 Faces in-the-Wild Challenge (300-W).

Stevens, B., Johnston, C., and Petryshen, P. (1996). Premature infant pain profile: development and initial validation. Research in Nursing Health, 12:13–22.

Tenorio, E. and Thomaz, C. (2011). Análise multilinear discriminante de formas frontais de imagens 2d de face. Proceedings of the X simpósio brasileiro de automação inteligente SBAI 2011, page 266–271.

Thomaz, C. E., Kitani, E., and Gillies, D. (2006). A maximum uncertainty lda-based approach for limited sample size problems - with application to face recognition. Journal of the Brazilian Computer Society, 12:7–18.

Xavier, I., Pereira, M., Giraldi, G., Gibson, S., Solomon, C., Rueckert, D., Gillies, D., and Thomaz., C. (2015). A photo-realistic generator of most expressive and discriminant changes in 2d face images. In proceedings of the 6th International Conference on Emerging Security Technologies, EST-2015, 20:80–85.

Xavier, I. R. R., Giraldi, G. A., Gibson, S. J., Gattas, G. J. F., Rueckert, D., and Thomaz., C. E. (2016). Construction of a spatio-temporal face atlas: Experiments using down syndrome samples. 29th SIBGRAPI, Conference on Graphics, Patterns and Images, 29:1–4.

TERUEL, Gilberto F.; HEIDERICH, Tatiany M.; GUINSBURG, Ruth; THOMAZ, Carlos E.. Analysis And Recognition Of Pain In 2d Face Images Of Full Term And Healthy Newborns. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 15. , 2018, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 228-239. ISSN 2763-9061. DOI: