Computational Intelligence Techniques and Phylogenetic Trees for Identification of Sedimentary Petrofacies

  • Camila M. Saporetti UFJF
  • Leonardo Goliatt UFJF
  • Leonardo C. de Oliveira Petrobras
  • Egberto Pereira UERJ


The heterogeneities are characterized by several sedimentary petro- facies. Petrofacies identification involves manual processes and time-consuming analyses. The study of the diagenesis has been encouraged by petroleum companies, in order to understand the distribution of porosity in sandstones. This work aims to analyze the use of clustering approaches to identify petrofacies and assist the analysis of petrographic data. In addition, this study introduced the use the phylogenetic analysis tools to understand the diagenetic process that occurred during sedimentary rock formation. The proposed methodology reaches similar results to those obtained by the conventional method of individualization while allows for reducing time and cost in the individualization task.


Beard, D. and Weyl, P. (1973). Influence of texture on porosity and permeability of unconsolidated sand. AAPG bulletin, 57(2):349–369.

Cesero, P., Mauro, L., and De Ros, L. (1989). Técnicas de preparação de lâminas petrográficas e de moldes de poros na petrobrás. Boletim de Geociências da PETROBRAS,3(1/2):105–116.

Cevolani, J. T., de Oliveira, L. C., Goliatt, L., and Pereira, E. (2011). 6o congresso brasileiro de pesquisa e desenvolvimento em petróleo e gás.

El Sharawy, M. S. and Gaafar, G. R. (2016). Reservoir zonation based on statistical analyses: A case study of the nubian sandstone, gulf of suez, egypt. Journal of African Earth Sciences, 124:199–210.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231.

Evamy, B. (1963). The application of a chemical staining technique to a study of dedolomitisation. Sedimentology, 2(2):164–170.

Folk, R. L. (1980). Petrology of sedimentary rocks. Hemphill Publishing Company. Huerta-Cepas, J., Serra, F., and Bork, P. (2016). Ete 3: reconstruction, analysis, and visualization of phylogenomic data. Molecular biology and evolution, 33(6):1635–1638.

Kadkhodaie-Ilkhchi, R., Rezaee, R., Moussavi-Harami, R., and Kadkhodaie-Ilkhchi, A. (2013). Analysis of the reservoir electrofacies in the framework of hydraulic flow units in the whicher range field, perth basin, western australia. Journal of Petroleum Science and Engineering, 111:106–120.

Lindholm, R. and Finkelman, R. B. (1972). Calcite staining: semiquantitative determination of ferrous iron. Journal of Sedimentary Research, 42(1).

Martinelli, G. and Eidsvik, J. (2014). Dynamic exploration designs for graphical models using clustering with applications to petroleum exploration. Knowledge-Based Systems, 58:113–126.

Oliveira, L. (2009). Estudo das relações entre o arcabouço estratigráfico e as alterações diagenéticas observadas na seção Devoniana da Bacia do Paraná. PhD thesis, Dissertação de Mestrado, Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro.

Oliveira, L. C. and Pereira, E. (2009). Aplicação de parâmetros diagenéticos para a caracterização do arcabouço estratigráfico do devoniano da bacia do paraná. In 5o Congresso Brasileiro de Pesquisa e Desenvolvimento em Petróleo e Gás.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65.

Ruzgar, E. and Erciyes, K. (2012). Clustering based distributed phylogenetic tree construction. Expert Systems with Applications, 39(1):89–98.

Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406–425.

Seidel, E. J., Júnior, F. d. J. M., Ansuj, A. P., and Noal, M. R. C. N. C. (2008). Comparação entre o método ward e o método k-médias no agrupamento de produtores de leite. Ciência e Natura, 30(1):7.

Weir, B. S. and Ott, J. (1997). Genetic data analysis ii. Trends in genetics, 13(9):379.

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5):377–392.

Xiong, H., Wu, J., and Chen, J. (2009). K-means clustering versus validation measures: a data-distribution perspective. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2):318–331.

Como Citar

Selecione um Formato
SAPORETTI, Camila M.; GOLIATT, Leonardo; DE OLIVEIRA, Leonardo C.; PEREIRA, Egberto. Computational Intelligence Techniques and Phylogenetic Trees for Identification of Sedimentary Petrofacies. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 15. , 2018, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 437-448. ISSN 2763-9061. DOI: