Systematic literature review on the use of Convolutional Neural Networks for pulmonary nodule detection in CT Scans

  • Joyce Moura Silva UFPI

Abstract


Lung cancer is one of the leading causes of mortality worldwide, as pointed out by the International Agency for Research on Cancer (IARC). Computed tomography is widely used to detect lung nodules, but manual analysis of these images is challenging due to the complexity and large volume of data. CNNs have been used to improve automatic nodule detection, demonstrating great effectiveness in identifying complex patterns in medical images. This study conducts a Systematic Literature Review in order to understand trends in the use of CNNs in the detection of pulmonary nodules and analyze these architectures and databases.

References

Armato III, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., Zhao, B., Aberle, D. R., Henschke, C. I., Hoffman, E. A., et al. (2011). The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans. Medical physics, 38(2):915–931.

Chen, Y. and Xie, M. (2024). Improved focus on hard samples for lung nodule detection. In Proceedings of the 2024 6th International Conference on Control and Computer Vision, pages 21–26.

Dolejšı, M. (2007). Detection of pulmonary nodules from ct scans. PhD thesis, Citeseer.

Eun, H., Kim, D., Jung, C., and Kim, C. (2018). Single-view 2d cnns with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection. Computer methods and programs in biomedicine, 165:215–224.

Guimarães, N. S., Ferreira, A. J., Silva, R. d. C. R., de Paula, A. A., Lisboa, C. S., Magno, L., Ichiara, M. Y., and Barreto, M. L. (2022). Deduplicating records in systematic reviews: there are free, accurate automated ways to do so. Journal of Clinical Epidemiology, 152:110–115.

Jiang, H., Ma, H., Qian, W., Gao, M., and Li, Y. (2018). An automatic detection system of lung nodule based on multigroup patch-based deep learning network. IEEE Journal of Biomedical and Health Informatics, 22:1227–1237.

Johnson, N. and Phillips, M. (2018). Rayyan for systematic reviews. Journal of Electronic Resources Librarianship, 30(1):46–48.

Kamiya, H., Murayama, S., Kakinohana, Y., and Miyara, T. (2011). Pulmonary nodules: a quantitative method of diagnosis by evaluating nodule perimeter difference to approximate oval using three-dimensional ct images. Clinical Imaging, 35(2):123–126.

Kirby, J. S., Armato, S. G., Drukker, K., Li, F., Hadjiiski, L., Tourassi, G. D., Clarke, L. P., Engelmann, R. M., Giger, M. L., Redmond, G., and Farahani, K. (2016). LUNGx Challenge for computerized lung nodule classification. Journal of Medical Imaging, 3(4):044506.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University, 33(2004):1–26.

Kitchenham, B. A. and Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2021). A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems, 33(12):6999–7019.

McKeown, S. and Mir, Z. M. (2021). Considerations for conducting systematic reviews: evaluating the performance of different methods for de-duplicating references. Systematic Reviews, 10(1):38.

Scannavino, K. R. F., Nakagawa, E. Y., Fabbri, S. C. P. F., and Ferrari, F. C. (2017). Revisão Sistemática da Literatura em Engenharia de Software: teoria e prática. Elsevier.

Setio, A. A. A., Traverso, A., De Bel, T., Berens, M. S., Van Den Bogaard, C., Cerello, P., Chen, H., Dou, Q., Fantacci, M. E., Geurts, B., et al. (2017). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Medical image analysis, 42:1–13.

Silva, A. C., Carvalho, P. C. P., and Gattass, M. (2005). Diagnosis of lung nodule using semivariogram and geometric measures in computerized tomography images. Computer Methods and Programs in Biomedicine, 79(1):31–38.

Xie, H., Yang, D., Sun, N., Chen, Z., and Zhang, Y. (2019). Automated pulmonary nodule detection in ct images using deep convolutional neural networks. Pattern Recognit., 85:109–119.

Yan, X., Pang, J., Qi, H., Zhu, Y., Bai, C., Geng, X., Liu, M., Terzopoulos, D., and Ding, X. (2016). Classification of lung nodule malignancy risk on computed tomography images using convolutional neural network: A comparison between 2d and 3d strategies. In Computer Vision – ACCV 2016 Workshops. Springer International Publishing.
Published
2025-05-28
SILVA, Joyce Moura. Systematic literature review on the use of Convolutional Neural Networks for pulmonary nodule detection in CT Scans. In: UNIFIED COMPUTING MEETING OF PIAUÍ (ENUCOMPI), 17. , 2025, Teresina/PI. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 109-118. DOI: https://doi.org/10.5753/enucompi.2025.9732.