Computational Optimization Using Spherical Geometric Modeling for Time-Domain Wave Propagation

  • Dayalla M. P. Almeida UFRN
  • Bruno V. Paiva-da-Silva UFERSA
  • Vitor H. M. Rodrigues UFRN
  • Ítalo A. S. Assis UFERSA
  • Samuel Xavier-de-Souza UFRN

Resumo


This study proposes a method to reduce computational cost in time-domain wave modeling. By applying spherical geometric modeling, the wave equation is solved only in dynamically defined regions. The approach was evaluated using mean squared error (MSE) on 3D acoustic models with varying source positions and propagation times. Results showed up to 25% runtime reduction, highlighting the method’s potential for seismic imaging and reservoir analysis.

Referências

Alford, R. M., Kelly, K. R., Boore, D. M. (1974). Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39(6), 834–842.

Nihei, K. T., Li, X. (2007). Frequency response modelling of seismic wavefields using finite difference methods. Geophysical Journal International, 169(1), 123–134.

Chu, W., et al. (2012). An efficient 3D finite-difference time-domain method for seismic modeling. Computers Geosciences, 44, 111–118.

Furse, C., et al. (2000). Faster FDTD schemes for computational electromagnetics. IEEE Transactions on Antennas and Propagation, 48(1), 104–111.

Tan, T. C., et al. (2014). Reducing wavefield storage using boundary saving strategies. SEG Technical Program Expanded Abstracts.

Nogueira, L. P., et al. (2020). Wavefield reconstruction methods for memory reduction in seismic modeling. Computers Geosciences, 141, 104537.

Nogueira, L. P., et al. (2021). A 3D wavefield reconstruction method with checkpointing and boundary saving. Journal of Computational Physics, 426, 109919.

Delfino, C., et al. (2024). OHEX: Optimal Hexahedral Expansion for adaptive wavefield computation. Geophysics (in press).
Publicado
02/07/2025
ALMEIDA, Dayalla M. P.; PAIVA-DA-SILVA, Bruno V.; RODRIGUES, Vitor H. M.; ASSIS, Ítalo A. S.; XAVIER-DE-SOUZA, Samuel. Computational Optimization Using Spherical Geometric Modeling for Time-Domain Wave Propagation. In: ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO NORDESTE (ERAD-NE), 6. , 2025, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 33-34. DOI: https://doi.org/10.5753/erad-ne.2025.11722.