Serviço de Predição de Recursos para Execução Eficiente de Workflows de Bioinformática em Nuvem Federada com Aprendizado de Máquina

  • Matheus de C. Sobrinho UnB
  • Aletéia P. F. de Araújo Von Paumgartten UnB

Abstract


The large amount of resources available across multiple providers in a federation makes it difficult to choose one that is suitable for certain workflows. This work proposes a Machine Learning Resource Prediction Service called sPCRAM. sPCRAM uses a machine learning model combined with a GRASP meta-heuristic to transparently and appropriately size resources, determining the monetary cost and execution time before executing the workflow. The results demonstrate that sPCRAM can adequately estimate the execution time and cost of cloud federation resources on average 97.70% faster than the brute force technique for resource selection.

References

Buyya, R., Ranjan, R., and Calheiros, R. N. (2010). Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services. In International Conference on Algorithms and Architectures for Parallel Processing, pages 13–31. Springer.

Chaisiri, S., Lee, B.-S., and Niyato, D. (2011). Optimization of resource provisioning cost in cloud computing. IEEE transactions on services Computing, 5(2):164–177.

Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of global optimization, 6(2):109–133.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830.

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I. M., Montero, R., Wolfsthal, Y., Elmroth, E., Caceres, J., et al. (2009). The reservoir model and architecture for open federated cloud computing. IBM Journal of Research and Development, 53(4):4–1.

Rosa, M. J., Ralha, C. G., Holanda, M., and Araujo, A. P. (2021). Computational resource and cost prediction service for scientific workflows in federated clouds. Future Generation Computer Systems, 125(2):844–858.
Published
2021-11-16
SOBRINHO, Matheus de C.; PAUMGARTTEN, Aletéia P. F. de Araújo Von. Serviço de Predição de Recursos para Execução Eficiente de Workflows de Bioinformática em Nuvem Federada com Aprendizado de Máquina. In: REGIONAL HIGH PERFORMANCE SCHOOL OF THE MIDWEST (ERAD-CO), 4. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 22-26. DOI: https://doi.org/10.5753/eradco.2021.18419.