Emulation of Large Language Models for RISC-V using QEMU
Abstract
This work aims to execute DeepSeek on a RISC-V emulator, with the objective of showing the viability of executing LLMs in RISC-V devices, as well as in embedded systems. This is important for the purposes of embedding AI, infra independency, energetic efficiency and open source. We used the QEMU emulator to execute RISC-V and obtained the tokens per second count in various tests. Our best result was 1.2415 tks/sec, a value considered slow, albeit viable.References
Fang, J., Varbanescu, A. L., and Sips, H. (2011). A comprehensive performance comparison of cuda and opencl. International Conference on Parallel Processing, pages 216–225.
Gerganov, G. (2023). llama.cpp. [link].
Moore, S. K. (2023). Risc-v laptops now available. [link].
OpenMathLib (2025). Openblas. [link].
Team, Q. (2025). Qemu documentation. [link].
Gerganov, G. (2023). llama.cpp. [link].
Moore, S. K. (2023). Risc-v laptops now available. [link].
OpenMathLib (2025). Openblas. [link].
Team, Q. (2025). Qemu documentation. [link].
Published
2025-05-28
How to Cite
SANTOS, Giovani L. B.; WANNER, Lucas.
Emulation of Large Language Models for RISC-V using QEMU. In: REGIONAL SCHOOL OF HIGH PERFORMANCE COMPUTING FROM SÃO PAULO (ERAD-SP), 16. , 2025, São José do Rio Preto/SP.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 21-25.
DOI: https://doi.org/10.5753/eradsp.2025.9700.
