Análise e comparação de algoritmos de classificação para o diagnóstico de câncer de mama

  • Jonas F. Silva UFAL
  • Tácito Neves UFAL

Abstract


The medical diagnosis based on images presents several computational challenges, including the phases of acquisition, pre-processing, segmentation and classification of the images. This work starts from the analysis of a database of magnetic resonance images of breast tumors (mammograms) and implementation of machine learning algorithms for the comparison of the best classifying model for the diagnosis of breast cancer.

References

OPAS 2018, ORGANIZAÇÃO PAN-AMERICANA DA SAÚDE: Folha informativa - câncer. Disponivel em: https://www.paho.org/bra/index.php

INCA 2019, INSTITUTO NACIONAL DE CÂNCER. Disponível em: https://www.inca.gov.br/tipos-de-cancer/cancer-de-mama

FLORIDA, U. of S. DDSM: Digital Database for Screening Mammography. Disponível em: http://www.eng.usf.edu/cvprg/Mammography/Database.html.

SBM 2019, SOCIEDADE BRASILEIRA DE MASTOLOGIA. Disponível em: http://www.sbmastologia.com.br/

HARALICK, R. M. Statistical and structural approaches to texture. Proc. IEEE, vol. 67, no. 5, pp. 786-804, 1979., 1979.

HERBRICH, G. Machine Learning: An Algorithmic Perspective. second edition. [S.l.]: Chapman & Hall/CRC, 2015.

OJALA, M. P. T.; HARWOOD, D. A comparative study of texture measures with classification based on feature distributions. Pattern Recoonition, Vol. 29, No. l, pp. 51 59, 1996., 1996.
Published
2021-10-25
SILVA, Jonas F.; NEVES, Tácito. Análise e comparação de algoritmos de classificação para o diagnóstico de câncer de mama. In: REGIONAL SCHOOL ON COMPUTING OF BAHIA, ALAGOAS, AND SERGIPE (ERBASE), 21. , 2021, Maceió. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 74-80. DOI: https://doi.org/10.5753/erbase.2021.20059.