Avaliando a Eficácia de Redes Neurais Artificiais para Reconhecimento de Face Utilizando Raspberry Pi

  • Ejziel Sampaio Santos UFRB
  • Fabrício Velôso de Jesus UFRB
  • Walber Conceição de Jesus Rocha UFRB
  • João Carlos Nunes Bittencourt UFRB

Abstract


The rise of mobile robotics has moved many everyday tasks to computational platforms. Computer vision applications targeting face recognition, despite being a simple task for humans, demand for a large amount of processing power in computer platforms. This paper presents a comparison of several face recognition systems using convolutional neural networks and softmax regressors, to evaluate the accuracy and performance rates of the application in a Raspberry Pi computer platform. Three different topologies of neural networks were evaluated, considering seven users. The results point to an accuracy rate of 69.23% and an average execution time of 301.45 ms in the best case.

References

Amos, B., Ludwiczuk, B., Satyanarayanan, M., et al. (2016). Openface: A general-purpose face recognition library with mobile applications. CMU School of Computer Science, 6(2).

Braga, A. d. P., Ludermir, T. B., and Carvalho, A. C. P. d. L. F. (2000). Redes neurais artificiais: teoria e aplicações. LTC.

Costa, L. R., Obelheiro, R. R., and Fraga, J. S. (2006). Introdução á biometria. Livro-texto de Minicursos-VI SBSeg.

Faceli, K., Lorena, A. C., Gama, J., and Carvalho, A. (2011). Inteligência artificial. Uma Abordagem de Aprendizado de Máquina. Editora LTC.

Haykin, S. (1999). Neural networks a comprehensive foundation. ed. sl: Pearson prentice hall.

Khan, S., Rahmani, H., Shah, S. A. A., and Bennamoun, M. (2018). A guide to convolutional neural networks for computer vision. Synthesis Lectures on Computer Vision, 8(1):1–207.

Lourenço, G. F. d. F. (2009). Reforço da segurança das biométricas utilizando codificação de fonte distribuída. Master’s thesis, Dissertação de Mestrado, Instituto Superior Técnico, Universidade Técnica de . . . .

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep Face Recognition. In Procedings of the British Machine Vision Conference 2015, pages 41.1–41.12, Swansea. British Machine Vision Association.

Ranjan, R., Castillo, C. D., and Chellappa, R. (2017). L2-constrained Softmax Loss for Discriminative Face Verification. arXiv:1703.09507 [cs]. arXiv: 1703.09507.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A Unified Embedding for Face Recognition and Clustering. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 815–823. arXiv: 1503.03832.

Sebe, N., Cohen, I., Garg, A., and Huang, T. S. (2005). Machine Learning in Computer Vision, volume 29. Springer Science Business Media.

Serengil, S. I. and Ozpinar, A. (2020). Lightface: A hybrid deep face recognition framework. In 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pages 1–5. IEEE.

Silva, A. L. (2016). Redução de características para classificação de imagens de faces. Master’s thesis, Dissertação de Mestrado, Universidade Federal Rural do Semi-Árido.

Silva, D. G. d. and Zampirolli, F. d. A. (2020). Reconhecimento facial para validação de usuário durante um questionário no Moodle. In Anais dos Workshops do Congresso Brasileiro de Informática na Educação (WCBIE), pages 124–131. SBC. ISSN: 0000-0000.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1701–1708, Columbus, OH, USA. IEEE.
Published
2021-10-25
SANTOS, Ejziel Sampaio; JESUS, Fabrício Velôso de; ROCHA, Walber Conceição de Jesus; BITTENCOURT, João Carlos Nunes. Avaliando a Eficácia de Redes Neurais Artificiais para Reconhecimento de Face Utilizando Raspberry Pi. In: REGIONAL SCHOOL ON COMPUTING OF BAHIA, ALAGOAS, AND SERGIPE (ERBASE), 21. , 2021, Maceió. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 124-133. DOI: https://doi.org/10.5753/erbase.2021.20366.