Real-time estimation of the angle of an anthropomorphic joint using a flexible resistive sensor
Abstract
The flexometer, also known as a flex sensor or resistive flex sensor (RFS), is a sensitive device that varies its resistance in response to bending. This study investigates the application of the RFS in accurately estimating angular displacements, with an emphasis on its potential for assistive technologies aimed at people with disabilities. The work focuses on the analysis and mitigation of hysteresis effects, a phenomenon in which the sensor’s response is influenced by its deformation history. Through a detailed analysis of hysteresis and the use of the Preisach model, significant insights were obtained for the effective compensation of this effect. This study contributes to a deeper understanding of hysteresis in flexible sensors and its implications for the development of more accurate and responsive assistive devices, thereby improving the quality of life for users.References
Brokate, M. and Sprekels, J. (2012). Hysteresis and phase transitions, volume 121. Springer Science & Business Media.
Brown, G. (2012). Descobrindo o microcontrolador stm32.
de Almeida, L. A. L., Deep, G. S., Lima, A. N., Neff, H. F., and Freire, R. C. S. (2001). A hysteresis model for a vanadium dioxide transition-edge microbolometer. IEEE Transactions on Instrumentation and Measurement, 50(4):1030–1035.
Eugênio, K. J. d. S. (2018). Sistema multissensorial vestível de baixo custo para captura de marcha humana aplicado a exoesqueleto ortopédico ortholeg 2.0. Master’s thesis, Brasil.
IBGE (2023). Pesquisa nacional por amostra de domicílios contínua - pessoas com deficiência, 2022. Acesso em: 10 set. 2024.
Kim, J.-S. and Kim, G.-W. (2017). Hysteresis compensation of piezoresistive carbon nanotube/polydimethylsiloxane composite-based force sensors. Sensors, 17(2):229.
Neely, J. S. and Restle, P. J. (1997). Capacitive bend sensor. US Patent 5,610,528.
Saggio, G. and Orengo, G. (2018). Flex sensor characterization against shape and curvature changes. Sensors and Actuators A: Physical, 273:221–231.
Saggio, G., Riillo, F., Sbernini, L., and Quitadamo, L. R. (2015). Resistive flex sensors: a survey. Smart Materials and Structures, 25(1):013001.
Sanca, A. S., Rocha, J. C., Eugenio, K. J., Nascimento, L. B., and Alsina, P. J. (2018). Characterization of resistive flex sensor applied to joint angular displacement estimation. In 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pages 33–38. IEEE.
SENA, J. A. d. S. et al. (2001). Adaptação do modelo de preisach para histereses assimétricas: aplicação ao caso vo2.
Stakvik, J. Å., Ragazzon, M. R. P., Eielsen, A. A., and Gravdahl, J. T. (2015). On implementation of the preisach model identification and inversion for hysteresis compensation.
Zimmerman, T. (1985). Optical flex sensor (united states patent no. us4542291a).
Zsurzsan, T.-G., Andersen, M. A., Zhang, Z., and Andersen, N. A. (2015). Preisach model of hysteresis for the piezoelectric actuator drive. In IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pages 002788–002793. IEEE.
Brown, G. (2012). Descobrindo o microcontrolador stm32.
de Almeida, L. A. L., Deep, G. S., Lima, A. N., Neff, H. F., and Freire, R. C. S. (2001). A hysteresis model for a vanadium dioxide transition-edge microbolometer. IEEE Transactions on Instrumentation and Measurement, 50(4):1030–1035.
Eugênio, K. J. d. S. (2018). Sistema multissensorial vestível de baixo custo para captura de marcha humana aplicado a exoesqueleto ortopédico ortholeg 2.0. Master’s thesis, Brasil.
IBGE (2023). Pesquisa nacional por amostra de domicílios contínua - pessoas com deficiência, 2022. Acesso em: 10 set. 2024.
Kim, J.-S. and Kim, G.-W. (2017). Hysteresis compensation of piezoresistive carbon nanotube/polydimethylsiloxane composite-based force sensors. Sensors, 17(2):229.
Neely, J. S. and Restle, P. J. (1997). Capacitive bend sensor. US Patent 5,610,528.
Saggio, G. and Orengo, G. (2018). Flex sensor characterization against shape and curvature changes. Sensors and Actuators A: Physical, 273:221–231.
Saggio, G., Riillo, F., Sbernini, L., and Quitadamo, L. R. (2015). Resistive flex sensors: a survey. Smart Materials and Structures, 25(1):013001.
Sanca, A. S., Rocha, J. C., Eugenio, K. J., Nascimento, L. B., and Alsina, P. J. (2018). Characterization of resistive flex sensor applied to joint angular displacement estimation. In 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pages 33–38. IEEE.
SENA, J. A. d. S. et al. (2001). Adaptação do modelo de preisach para histereses assimétricas: aplicação ao caso vo2.
Stakvik, J. Å., Ragazzon, M. R. P., Eielsen, A. A., and Gravdahl, J. T. (2015). On implementation of the preisach model identification and inversion for hysteresis compensation.
Zimmerman, T. (1985). Optical flex sensor (united states patent no. us4542291a).
Zsurzsan, T.-G., Andersen, M. A., Zhang, Z., and Andersen, N. A. (2015). Preisach model of hysteresis for the piezoelectric actuator drive. In IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pages 002788–002793. IEEE.
Published
2024-11-05
How to Cite
OLIVEIRA, Laiza Araujo Gordiano; SANCA, Armando S..
Real-time estimation of the angle of an anthropomorphic joint using a flexible resistive sensor. In: REGIONAL SCHOOL ON COMPUTING OF BAHIA, ALAGOAS, AND SERGIPE (ERBASE), 24. , 2024, Salvador/BA.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 84-93.
DOI: https://doi.org/10.5753/erbase.2024.4419.
