Impact of Rainfall on Urban Traffic: A Case Study on BR-104 in Alagoas

  • Victor A. L. Brasileiro UFAL
  • Geymerson S. Ramos Inria, INSA Lyon – CITI
  • Andre L. L. Aquino UFAL

Abstract


This study investigates how rainfall events impact vehicle flow on highway BR-104, along the section that crosses the city of Maceió, the capital of the state of Alagoas. We analyzed traffic data from the National Traffic Counting Plan and precipitation data from the National Institute of Meteorology, collected between January and December 2022. Linear regression and mean percentage error (MPE) analysis were applied to assess traffic variation on rainy days. The results showed an increase in the number of passenger vehicles and a decrease in the volume of larger vehicles.

References

Camacho, F. J., García, A., and Belda, E. (2010). Analysis of impact of adverse weather on freeway free-flow speed in spain. Transportation Research Record, pages 150–159.

Datla, S., Sahu, P., Roh, H.-J., and Sharma, S. (2013). A comprehensive analysis of the association of highway traffic with winter weather conditions. Procedia - Social and Behavioral Sciences, 104:497–506.

Dhaliwal, S. S., Wu, X., Thai, J., and Jia, X. (2017). Effects of rain on freeway traffic in southern california. Transportation Research Record, 2616(1):69–80.

Dismuke, C. and Lindrooth, R. (2006). Ordinary least squares. Methods and designs for outcomes research, 93(1):93–104.

DNIT (2022). Plano nacional de contagem de tráfego - dados de 2022. [link]. Acesso em: 04 jun. 2025.

Giardini, F., Hadjidimitriou, N. S., Mamei, M., Bastardi, G., Codeluppi, N., and Pancotto, F. (2023). Using mobile phone data to map evacuation and displacement: a case study of the central italy earthquake. Scientific Reports, 13.

IBGE (2024). Instituto Brasileiro de Geografia e Estatística. [link]. Acesso em: 14 jul. 2025.

INMET (2022). Instituto nacional de meteorologia - dados históricos de precipitação. [link]. Acesso em: 04 jun. 2025.

Jia, Y., Wu, J., and Xu, M. (2017). Traffic flow prediction with rainfall impact using a deep learning method. Journal of Advanced Transportation, 2017.

McCrum-Gardner, E. (2008). Which is the correct statistical test to use? British Journal of Oral and Maxillofacial Surgery, 46(1):38–41.

Meneguette, R. I., De Grande, R., and Loureiro, A. (2018). Intelligent transport system in smart cities. Cham: Springer International Publishing.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830.

Pillar, V. D. and Overbeck, G. E. (2024). Learning from a climate disaster: The catastrophic floods in southern brazil. Science, 385(6713):eadr8356.

Qi, Y., Zheng, Z., and Jia, D. (2020). Exploring the spatial-temporal relationship between rainfall and traffic flow: A case study of brisbane, australia. Sustainability (Switzerland), 12.

Wang, Y.-Q. and Luo, J. (2017). Study of rainfall impacts on freeway traffic flow characteristics. Transportation Research Procedia, 25:1533–1543. World Conference on Transport Research – WCTR 2016, Shanghai.

Yin, C., Xiong, Z., Chen, H., Wang, J., Cooper, D., and David, B. (2015). A literature survey on smart cities. Science China. Information Sciences, 58(10):1–18.
Published
2025-08-12
BRASILEIRO, Victor A. L.; RAMOS, Geymerson S.; AQUINO, Andre L. L.. Impact of Rainfall on Urban Traffic: A Case Study on BR-104 in Alagoas. In: REGIONAL SCHOOL ON COMPUTING OF BAHIA, ALAGOAS, AND SERGIPE (ERBASE), 25. , 2025, Lagarto/SE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 132-141. DOI: https://doi.org/10.5753/erbase.2025.13651.