Motiro: a unified automatic framework for statistical analysis of probe-based confocal laser endomicroscopy videos of colorectal mucosa
Resumo
Probe-based Confocal Laser Endomicrocopy (pCLE) enables imaging the colorectal mucosa for screening and surveillance of cancer. Analyzing acquired videos relies on subjectivity of the endomicroscopists. Quantitative criteria are needed to enhance the diagnostics obtained using pCLE. We present Motiro, an automatic framework to extract features of the colorectal mucosa imaged by pCLE. Morphometric features of the crypts of the healthy colorectal mucosa are analysed and their variability quantified using the Shannon entropy. Hellinger distance compares the statistics of a morphometric parameter in multiple mucosas (or mucosas' regions). Quantification of variability of the healthy mucosa is a prerequisite for pCLE-based early diagnostics of colorectal cancer.Referências
André, B. (2012). Software for automated classication of probe-based confocal laser endomicroscopy videos of colorectal polyps. World Journal of Gastroenterology, 18(39):5560.
Arganda-Carreras, I., Sorzano, C. O. S., Marabini, R., Carazo, J. M., Ortiz-de Solorzano, C., and Kybic, J. (2006). Consistent and Elastic Registration of Histological Sections Using Vector-Spline Regularization. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Beichel, R. R., and Sonka, M., editors, Computer Vision Approaches to Medical Image Analysis, volume 4241, pages 85–95. Springer Berlin Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in Computer Science.
Bradski, G. and Kaehler, A. (2000). OpenCV. Dr. Dobb’s journal of software tools, 3.
de Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N., Pop, S., Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte, T., Le Montagner, Y., Lagache, T., Dufour, Icy: an open bioimage informatics platform for A., and Olivo-Marin, J.-C. (2012). extended reproducible research. Nature Methods, 9(7):690–696.
Gupta, S., Lieberman, D., Anderson, J. C., Burke, C. A., Dominitz, J. A., Kaltenbach, T., Robertson, D. J., Shaukat, A., Syngal, S., and Rex, D. K. (2020). Recommendations for Follow-Up After Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology, 158(4):1131– 1153.e5. Publisher: Elsevier.
Karstensen, J. G. (2016). Evaluation of confocal laser endomicroscopy for assessment and monitoring of therapeutic response in patients with inammatory bowel disease. Danish Medical Journal, 63(11).
Kiesslich, R., Burg, J., Vieth, M., Gnaendiger, J., Enders, M., Delaney, P., Polglase, A., McLaren, W., Janell, D., Thomas, S., Nafe, B., Galle, P. R., and Neurath, M. F. (2004). Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology, 127(3):706–713.
Kowalczyk, M., Orlowski, M., Klepacki, L., Zinkiewicz, K., Kurpiewski, W., Kaczerska, D., Pesta, W., Zielínski, E., and Siermontowski, P. (2020). Rectal aberrant crypt foci (ACF) as a predictor of benign and malignant neoplastic lesions in the large intestine. BMC Cancer, 20(1):133.
Kowalczyk, M., Orowski, M., Siermontowski, P., Mucha, D., Zinkiewicz, K., Kurpiewski, W., Zielínski, E., Kowalczyk, I., and Pedrycz, A. (2018). Occurrence of colorectal aberrant crypt foci depending on age and dietary patterns of patients. BMC Cancer, 18(1):213.
Quénéhervé, L., David, G., Bourreille, A., Hardouin, J. B., Rahmi, G., Neunlist, M., Brégeon, J., and Coron, E. (2019). Quantitative assessment of mucosal architecture using computer-based analysis of confocal laser endomicroscopy in inammatory bowel diseases. Gastrointestinal Endoscopy, 89(3):626–636.
Uchiyama, T., Takahashi, H., Endo, H., Kato, S., Sakai, E., Hosono, K., Yoneda, M., Inamori, M., Hippo, Y., Nakagama, H., and Nakajima, A. (2012). Number of aberrant crypt foci in the rectum is a useful surrogate marker of colorectal adenoma recurrence. Digestive Endoscopy: Ofcial Journal of the Japan Gastroenterological Endoscopy Society, 24(5):353–357.
Arganda-Carreras, I., Sorzano, C. O. S., Marabini, R., Carazo, J. M., Ortiz-de Solorzano, C., and Kybic, J. (2006). Consistent and Elastic Registration of Histological Sections Using Vector-Spline Regularization. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Beichel, R. R., and Sonka, M., editors, Computer Vision Approaches to Medical Image Analysis, volume 4241, pages 85–95. Springer Berlin Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in Computer Science.
Bradski, G. and Kaehler, A. (2000). OpenCV. Dr. Dobb’s journal of software tools, 3.
de Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N., Pop, S., Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte, T., Le Montagner, Y., Lagache, T., Dufour, Icy: an open bioimage informatics platform for A., and Olivo-Marin, J.-C. (2012). extended reproducible research. Nature Methods, 9(7):690–696.
Gupta, S., Lieberman, D., Anderson, J. C., Burke, C. A., Dominitz, J. A., Kaltenbach, T., Robertson, D. J., Shaukat, A., Syngal, S., and Rex, D. K. (2020). Recommendations for Follow-Up After Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology, 158(4):1131– 1153.e5. Publisher: Elsevier.
Karstensen, J. G. (2016). Evaluation of confocal laser endomicroscopy for assessment and monitoring of therapeutic response in patients with inammatory bowel disease. Danish Medical Journal, 63(11).
Kiesslich, R., Burg, J., Vieth, M., Gnaendiger, J., Enders, M., Delaney, P., Polglase, A., McLaren, W., Janell, D., Thomas, S., Nafe, B., Galle, P. R., and Neurath, M. F. (2004). Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology, 127(3):706–713.
Kowalczyk, M., Orlowski, M., Klepacki, L., Zinkiewicz, K., Kurpiewski, W., Kaczerska, D., Pesta, W., Zielínski, E., and Siermontowski, P. (2020). Rectal aberrant crypt foci (ACF) as a predictor of benign and malignant neoplastic lesions in the large intestine. BMC Cancer, 20(1):133.
Kowalczyk, M., Orowski, M., Siermontowski, P., Mucha, D., Zinkiewicz, K., Kurpiewski, W., Zielínski, E., Kowalczyk, I., and Pedrycz, A. (2018). Occurrence of colorectal aberrant crypt foci depending on age and dietary patterns of patients. BMC Cancer, 18(1):213.
Quénéhervé, L., David, G., Bourreille, A., Hardouin, J. B., Rahmi, G., Neunlist, M., Brégeon, J., and Coron, E. (2019). Quantitative assessment of mucosal architecture using computer-based analysis of confocal laser endomicroscopy in inammatory bowel diseases. Gastrointestinal Endoscopy, 89(3):626–636.
Uchiyama, T., Takahashi, H., Endo, H., Kato, S., Sakai, E., Hosono, K., Yoneda, M., Inamori, M., Hippo, Y., Nakagama, H., and Nakajima, A. (2012). Number of aberrant crypt foci in the rectum is a useful surrogate marker of colorectal adenoma recurrence. Digestive Endoscopy: Ofcial Journal of the Japan Gastroenterological Endoscopy Society, 24(5):353–357.
Publicado
26/08/2021
Como Citar
SABINO, Alan U.; SAFATLE-RIBEIRO, Adriana V.; MALUF-FILHO, Fauze; RAMOS, Alexandre F..
Motiro: a unified automatic framework for statistical analysis of probe-based confocal laser endomicroscopy videos of colorectal mucosa. In: ESCOLA REGIONAL DE COMPUTAÇÃO APLICADA À SAÚDE (ERCAS), 8. , 2021, São Paulo.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2021
.
p. 30-33.
DOI: https://doi.org/10.5753/ercas.2021.17432.