Computing, Health, and Safety: Exploring the Potential of Federated Learning in Cardiac Arrhythmia Detection
Abstract
This article assesses the use of federated learning in the context of cardiac arrhythmia detection. A traditional Deep Learning approach was compared against a federated one, and it was observed that the federated approach was able to maintain predictive performance and training time similar to the original proposal while ensuring the security and privacy of data.References
Congresso Nacional (2018). Lei nº 13.709, de 14 de agosto de 2018.
Efficient and Intelligent Computing Lab (2022). Tinyml-contest-solution (GitHub).
Empresa Brasil de Comunicação (2016). Arritmias cardíacas causam 320 mil mortes súbitas por ano, alerta entidade.
Hanrui Wang, J. H. iccad-tinyml-open (repositório github).
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210.
Rizwan, A., Zoha, A., Mabrouk, I. B., Sabbour, H. M., Al-Sumaiti, A. S., Alomainy, A., Imran, M. A., and Abbasi, Q. H. (2020). A review on the state of the art in atrial fibrillation detection enabled by machine learning. IEEE reviews in biomedical engineering, 14:219–239.
Zhang, J., Chaoyao Shen, X. C., Yuning Ji, Y. Z., et al. Iccad-tinyml-2nd-place (GitHub).
Efficient and Intelligent Computing Lab (2022). Tinyml-contest-solution (GitHub).
Empresa Brasil de Comunicação (2016). Arritmias cardíacas causam 320 mil mortes súbitas por ano, alerta entidade.
Hanrui Wang, J. H. iccad-tinyml-open (repositório github).
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210.
Rizwan, A., Zoha, A., Mabrouk, I. B., Sabbour, H. M., Al-Sumaiti, A. S., Alomainy, A., Imran, M. A., and Abbasi, Q. H. (2020). A review on the state of the art in atrial fibrillation detection enabled by machine learning. IEEE reviews in biomedical engineering, 14:219–239.
Zhang, J., Chaoyao Shen, X. C., Yuning Ji, Y. Z., et al. Iccad-tinyml-2nd-place (GitHub).
Published
2024-04-03
How to Cite
COSTA, Arthur N. F. Martins da; SILVA, Pedro.
Computing, Health, and Safety: Exploring the Potential of Federated Learning in Cardiac Arrhythmia Detection. In: REGIONAL SCHOOL OF APPLIED COMPUTING FOR HEALTH (ERCAS), 9. , 2024, Ouro Preto/MG.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 25-28.
DOI: https://doi.org/10.5753/ercas.2024.238587.