Exploring Computational Techniques to Enhance Primary Health Care: Opportunities, Synergies, and Potential Impacts

  • Dimas Cassimiro Nascimento UFAPE
  • Igor Medeiros Vanderlei UFAPE
  • Daliton da Silva UFAPE

Abstract


The population’s universal access to basic health care services is one of the most relevant pillars of Brazil’s Unified Health System (SUS). By analyzing and processing datasets produced by the software systems used in the SUS, we can explore a series of computational techniques aiming to improve the quality of primary care. In this work, we aim to present and discuss the potential of a series of computational techniques, such as optimization, heuristics, time series forecasting, automatic clustering and machine learning, to improve the provision of primary healthcare services.

References

Arruda, L. C., do Amaral Rodrigues, G., da Ponte Pierre, L. P., and Porfirio, E. J. (2019). Uma ferramenta para análise de dados coletados pelo limesurvey nas unidades básicas de saúde. In Anais da VII Escola Regional de Computação Aplicada à Saúde, pages 37–42. SBC.

Baia, M. J., Conde, G. A., and Conde, V. M. G. (2019). Utilizando análise espacial na identificação dos territórios de unidades básicas de saúde e sua correlação com casos de hanseníase. In Anais do XIX Simpósio Brasileiro de Computação Aplicada à Saúde, pages 164–174. SBC.

Bishop, C. (2006). Pattern recognition and machine learning. Springer google schola, 2:531–537.

Hamilton, J. D. (2020). Time series analysis. Princeton university press.

Nithya, B. and Ilango, V. (2017). Predictive analytics in health care using machine learning tools and techniques. In 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), pages 492–499. IEEE.
Published
2024-04-03
NASCIMENTO, Dimas Cassimiro; VANDERLEI, Igor Medeiros; SILVA, Daliton da. Exploring Computational Techniques to Enhance Primary Health Care: Opportunities, Synergies, and Potential Impacts. In: REGIONAL SCHOOL OF APPLIED COMPUTING FOR HEALTH (ERCAS), 9. , 2024, Ouro Preto/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 33-36. DOI: https://doi.org/10.5753/ercas.2024.238693.