Deep learning applied to cell recognition in Pap Smear tests
Abstract
This paper addresses the problem of cervix cancer detection using deep-learning methods on cells extracted from pap-smear tests. We present a methodology for cell classification, along with an evaluation of the effectiveness of different convolutional models in this classification task.References
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
Ji, J., Zhang, W., Dong, Y., Lin, R., Geng, Y., and Hong, L. (2023). Automated cervical cell segmentation using deep ensemble learning. BMC Medical Imaging, 23(1):137.
Mosiichuk, V., Sampaio, A., Viana, P., Oliveira, T., and Rosado, L. (2023). Improving mobile-based cervical cytology screening: A deep learning nucleus-based approach for lesion detection. Applied Sciences, 13(17).
Nayar, R. and Wilbur, D. (2015). The Bethesda System for Reporting Cervical Cytology. Definitions, Criteria, and Explanatory Notes.
Rezende, M. T., Silva, R., Bernardo, F. d. O., Tobias, A. H. G., Oliveira, P. H. C., Machado, T. M., Costa, C. S., Medeiros, F. N. S., Ushizima, D. M., Carneiro, C. M., and Bianchi, A. G. C. (2021). Cric searchable image database as a public platform for conventional pap smear cytology data. Scientific Data, 8(1):151.
Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, pages 6105–6114. PMLR.
Zak, J., Grzeszczyk, M. K., Pater, A., Roszkowiak, L., Siemion, K., and Korzynska, A. (2022). Cell image augmentation for classification task using gans on pap smear dataset. Biocybernetics and Biomedical Engineering, 42(3):995–1011.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
Ji, J., Zhang, W., Dong, Y., Lin, R., Geng, Y., and Hong, L. (2023). Automated cervical cell segmentation using deep ensemble learning. BMC Medical Imaging, 23(1):137.
Mosiichuk, V., Sampaio, A., Viana, P., Oliveira, T., and Rosado, L. (2023). Improving mobile-based cervical cytology screening: A deep learning nucleus-based approach for lesion detection. Applied Sciences, 13(17).
Nayar, R. and Wilbur, D. (2015). The Bethesda System for Reporting Cervical Cytology. Definitions, Criteria, and Explanatory Notes.
Rezende, M. T., Silva, R., Bernardo, F. d. O., Tobias, A. H. G., Oliveira, P. H. C., Machado, T. M., Costa, C. S., Medeiros, F. N. S., Ushizima, D. M., Carneiro, C. M., and Bianchi, A. G. C. (2021). Cric searchable image database as a public platform for conventional pap smear cytology data. Scientific Data, 8(1):151.
Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, pages 6105–6114. PMLR.
Zak, J., Grzeszczyk, M. K., Pater, A., Roszkowiak, L., Siemion, K., and Korzynska, A. (2022). Cell image augmentation for classification task using gans on pap smear dataset. Biocybernetics and Biomedical Engineering, 42(3):995–1011.
Published
2024-04-03
How to Cite
SILVA, Henrique Castro e; GOMIDE, Leonardo Caetano; MACHADO, Alexei Manso Correa.
Deep learning applied to cell recognition in Pap Smear tests. In: REGIONAL SCHOOL OF APPLIED COMPUTING FOR HEALTH (ERCAS), 9. , 2024, Ouro Preto/MG.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 45-48.
DOI: https://doi.org/10.5753/ercas.2024.238704.