Detecção e Segmentação Automática de Estruturas em Imagens de Exames Oftalmológicos

  • Filipe A. Sampaio UFPI
  • Rodrigo M. S. Veras UFPI
  • Elineide Santos UFPI
  • Helano M. B. F. Portela UFPI

Resumo


Este artigo propõe um método semiautomático para segmentar lesões em imagens da córnea, visando auxiliar os especialistas no monitoramento da evolução da lesão. Tais lesões podem ser categorizadas como patologias que afetam a estrutura ocular na forma de ulceração, infecção, erosão ou algum outro tipo de trauma. Assim, o método proposto utiliza regiões marcadas pelo especialista para treinar dois algoritmos classificadores. Na extração de atributos, foi realizado agrupamentos de pixels com textura similar, chamado superpixel. Com isso, foi obtido bons resultados com as métricas sensibilidade: 99,48% e similaridade Dice: 80,03%. Por fim, concluimos que os resultados mostraram que o classificador Random Forest obteve um melhor desempenho.

Referências

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 34(11):2274–2282.

Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3):297–302.

Hajer, J., Kamel, H., and Noureddine, E. (2006). Blood vessels segmentation in retina image using mathematical morphology and the stft analysis. In 2006 2nd International Conference on Information & Communication Technologies, volume 1, pages 1130–1134. IEEE.

Haralick, R. M., Shanmugam, K., et al. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, (6):610–621.

Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition, volume 1, pages 278–282. IEEE

Lima, P., Veras, R., Leite, D., Tales, W., and Mendes, F. (2018). Avaliação de classificadores como método de segmentação de lesões na córnea. In Anais da IV Escola Regional de Informática do Piauı́, pages 91–96. SBC.

Nayak, D. R., Dash, R., and Majhi, B. (2016). Brain mr image classification using two-dimensional discrete wavelet transform and adaboost with random forests. Neurocomputing, 177:188–197.

Santos, L., Veras, R., Rabelo, R., Aires, K., and Aires, O. (2017). A seeded fuzzy c-means based approach to automatic cup-to-disc ratio measurement. In 2017 IEEEInternational Conference on Systems, Man, and Cybernetics (SMC), pages 1075–1080. IEEE.

Tang, Z., Su, Y., Er, M. J., Qi, F., Zhang, L., and Zhou, J. (2015). A local binary pattern based texture descriptors for classification of tea leaves. Neurocomputing, 168:1011–1023.

Veras, R., Aires, K., Britto, L., et al. (2018). Medical image segmentation using seeded fuzzy c-means: A semi-supervised clustering algorithm. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE.

Wang, L., Zhang, K., Liu, X., Long, E., Jiang, J., An, Y., Zhang, J., Liu, Z., Lin, Z., Li, X., et al. (2017). Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images. Scientific reports, 7:41545.
Publicado
26/12/2019
SAMPAIO, Filipe A.; VERAS, Rodrigo M. S. ; SANTOS, Elineide; PORTELA, Helano M. B. F. . Detecção e Segmentação Automática de Estruturas em Imagens de Exames Oftalmológicos. In: ESCOLA REGIONAL DE COMPUTAÇÃO APLICADA À SAÚDE (ERCAS), 7. , 2019, Teresina. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 73-78.