Identification of risk areas as a method of surveillance of dengue cases
Resumo
Identifying spatial clusters of risk for dengue cases according to social vulnerability constitutes a powerful tool for effective epidemiological and urban management. In this way, this work carries out an ecological study that considered confirmed cases of dengue and actions of endemic agents in the municipality of São Carlos-SP, in the year 2019, through the application of the spatial scan technique for classification of the risk areas, computing the relative risk (RR), with a confidence interval of 95% (CI95%:) and the São Paulo Social Vulnerability Index (IPVS) to characterize these areas. Seven clusters were identified, two of which were high risk (RR=37.54 / RR=33.39), with the highest risk located in a region with high vulnerability and the second in a region with very low vulnerability. These results provide information that allows the targeting of specific control actions from the early detection of cases in places with greater dengue transmissibility.
Referências
Andrade, A. L., Monteiro, A. M. V., Barcellos, C., Lisboa, E., Acosta, L. M. W., Almeida, M. C. d. M., Brito, M. R. V., Carvalho, M. S., Santos, M. A. d., Cruz, O., et al. (2007). Introdução à estatística espacial para a saúde pública.
Arroyo, L. H., Yamamura, M., Protti-Zanatta, S. T., Fusco, A. P. B., Palha, P. F., Ramos, A. C. V., Uchoa, S. A., and Arcêncio, R. A. (2017). Identificação de áreas de risco para a transmissão da tuberculose no município de são carlos, são paulo, 2008 a 2013. Epidemiologia e Serviços de Saúde, 26:525-534.
Câmara, G., Carvalho, M. S., Cruz, O. G., and Correa, V. (2004). Análise espacial de áreas. Análise espacial de dados geográficos, 2.
Canal, M. R., Ferreira, E. R. d. S., Estofolete, C. F., Dias, A. M., Tukasan, C., Bertoque, A. C., Muniz, V. D., Nogueira, M. L., and Silva, N. S. d. (2018). Spatiotemporal-based clusters as a method for dengue surveillance. Revista Panamericana de Salud Pública, 41:e162.
Da Silva, N. S., da Silva-Nunes, M., Malafronte, R. S., Menezes, M. J., D'Arcadia, R. R., Komatsu, N. T., Scopel, K. K., Braga, É. M., Cavasini, C. E., Cordeiro, J. A., et al. (2010). Epidemiology and control of frontier malaria in brazil: lessons from community-based studies in rural amazonia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 104(5):343-350.
de Melo, D. P. O., Scherrer, L. R., and Eiras, Á. E. (2012). Dengue fever occurrence and vector detection by larval survey, ovitrap and mosquitrap: a space-time clusters analysis. PloS one, 7(7):e42125.
do Carmo, R. F., Júnior, J. V. J. S., Pastor, A. F., and de Souza, C. D. F. (2020). Spatiotemporal dynamics, risk areas and social determinants of dengue in northeastern brazil, 2014-2017: an ecological study. Infectious Diseases of Poverty, 9(1):1-16.
Estallo, E. L., Carbajo, A. E., Grech, M. G., Frías-Céspedes, M., López, L., Lanfri, M., Ludueña-Almeida, F. F., and Almiron, W. R. (2014). Spatio-temporal dynamics of dengue 2009 outbreak in córdoba city, argentina. Acta tropica, 136:129-136.
IBGE (2022). Instituto brasileiro de geografia e estatística cidades são calos. https://cidades.ibge.gov.br/brasil/sp/sao-carlos/panorama.
Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: detection and inference. Statistics in medicine, 14(8):799-810.
Li, H., Calder, C. A., and Cressie, N. (2007). Beyond moran's i: testing for spatial dependence based on the spatial autoregressive model. Geographical analysis, 39(4):357-375.
Monteiro, A. M. V., Câmara, G., Carvalho, M., and Druck, S. (2004). Análise espacial de dados geográficos. Brasília: Embrapa.
Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2):17-23.
SEADE (2010). Fundação sistema estadual de análise de dados. Índice paulista de vulnerabilidade social.