Optimization of Regression Models for Predicting Weight in Small Ruminants Using Body Measurements
Abstract
Sheep and goat farming in Brazil is expanding but faces challenges in matching the productivity of cattle farming. On small farms, the absence of scales and the high costs associated with their implementation hinder precise zootechnical control. This study aimed to overcome these challenges by estimating the body weight of sheep and goats using regression techniques optimized with Grid Search. With morphological measurements as inputs, the SVR model showed robust results: MAE of 3.83, RMSE of 5.43, and R² of 85.0%, directly competing with leading literature works. These promising findings contribute to more efficient and sustainable livestock management, enhancing the sheep and goat farming sector in the country.References
Abbas, A., Ullah, M. A., and Waheed, A. (2021). Body weight prediction using different data mining algorithms in thalli sheep: A comparative study. Veterinary World, 14(9):2332.
Bentéjac, C., Csörgő, A., and Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54:1937–1967.
Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76(3):503–514.
Candia, J. and Tsang, J. S. (2019). enetxplorer: an r package for the quantitative exploration of elastic net families for generalized linear models. BMC bioinformatics, 20:1–11.
Carneiro, T. C., Rocha, P. A., Carvalho, P. C., and Fernández-Ramírez, L. M. (2022). Ridge regression ensemble of machine learning models applied to solar and wind forecasting in brazil and spain. Applied Energy, 314:118936.
Chicco, D., Warrens, M. J., and Jurman, G. (2021). The coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation. Peerj computer science, 7:e623.
Costa, J. A. A., Reis, F. A., and de Lucena, C. C. (2018). Boletim do centro de inteligência e mercado de caprinos e ovinos [recurso eletrônico]. Dados eletrônicos.
FAO. (2020). World cattle inventory: Ranking of countries. FAO.
Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer.
He, C., Qiao, Y., Mao, R., Li, M., and Wang, M. (2023). Enhanced litehrnet based sheep weight estimation using rgb-d images. Computers and Electronics in Agriculture, 206:107667.
Ibrahim, A., Artama, W. T., Budisatria, I. G. S., Yuniawan, R., Atmoko, B. A., and Widayanti, R. (2021). Regression model analysis for prediction of body weight from body measurements in female batur sheep of banjarnegara district, indonesia. Biodiversitas Journal of Biological Diversity, 22(7).
Iqbal, M. (2013). Prediction of body weight through body measurements in beetal goats. Pakistan Journal of Science, 65(4).
James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to statistical learning, volume 112. Springer.
Kramer, O. and Kramer, O. (2013). K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors, pages 13–23.
Liashchynskyi, P. and Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: a big comparison for nas. arXiv preprint arXiv:1912.06059.
Martins, B., Mendes, A., Silva, L., Moreira, T., Costa, J., Rotta, P., Chizzotti, M., and Marcondes, M. (2020). Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements. Livestock science, 236:104054.
Menesatti, P., Costa, C., Antonucci, F., Steri, R., Pallottino, F., and Catillo, G. (2014). A low-cost stereovision system to estimate size and weight of live sheep. Computers and Electronics in Agriculture, 103:33–38.
Muthukrishnan, R. and Rohini, R. (2016). Lasso: A feature selection technique in predictive modeling for machine learning. In 2016 IEEE international conference on advances in computer applications (ICACA), pages 18–20. Ieee.
NÓBREGA, A. and VERGNE, M. (2018). Novo censo agropecuário mostra crescimento de efetivo de caprinos e ovinos no nordeste. Empresa Brasileira de Pesquisa Agropecuária: Embrapa Caprinos e Ovinos.
Oliveira, M. (2019). Produção da pecuária municipal 2018. Catalog of the Instituto Brasileiro de Geografia e Estatística, 84(01014234):1–8.
Sabbioni, A., Beretti, V., Superchi, P., and Ablondi, M. (2020). Body weight estimation from body measures in cornigliese sheep breed. Italian Journal of Animal Science, 19(1):25–30.
Samperio, E., Lidón, I., Rebollar, R., Castejón-Limas, M., and Álvarez-Aparicio, C. (2021). Lambs’ live weight estimation using 3d images. Animal, 15(5):100212.
Sant’Ana, D. A., Pache, M. C. B., Martins, J., Soares, W. P., de Melo, S. L. N., Garcia, V., de Moares Weber, V. A., da Silva Heimbach, N., Mateus, R. G., and Pistori, H. (2021). Weighing live sheep using computer vision techniques and regression machine learning. Machine Learning with Applications, 5:100076.
Song, X., Bokkers, E., Van der Tol, P., Koerkamp, P. G., and Van Mourik, S. (2018). Automated body weight prediction of dairy cows using 3-dimensional vision. Journal of dairy science, 101(5):4448–4459.
Taud, H. and Mas, J.-F. (2018). Multilayer perceptron (mlp). Geomatic approaches for modeling land change scenarios, pages 451–455.
Bentéjac, C., Csörgő, A., and Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54:1937–1967.
Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76(3):503–514.
Candia, J. and Tsang, J. S. (2019). enetxplorer: an r package for the quantitative exploration of elastic net families for generalized linear models. BMC bioinformatics, 20:1–11.
Carneiro, T. C., Rocha, P. A., Carvalho, P. C., and Fernández-Ramírez, L. M. (2022). Ridge regression ensemble of machine learning models applied to solar and wind forecasting in brazil and spain. Applied Energy, 314:118936.
Chicco, D., Warrens, M. J., and Jurman, G. (2021). The coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation. Peerj computer science, 7:e623.
Costa, J. A. A., Reis, F. A., and de Lucena, C. C. (2018). Boletim do centro de inteligência e mercado de caprinos e ovinos [recurso eletrônico]. Dados eletrônicos.
FAO. (2020). World cattle inventory: Ranking of countries. FAO.
Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer.
He, C., Qiao, Y., Mao, R., Li, M., and Wang, M. (2023). Enhanced litehrnet based sheep weight estimation using rgb-d images. Computers and Electronics in Agriculture, 206:107667.
Ibrahim, A., Artama, W. T., Budisatria, I. G. S., Yuniawan, R., Atmoko, B. A., and Widayanti, R. (2021). Regression model analysis for prediction of body weight from body measurements in female batur sheep of banjarnegara district, indonesia. Biodiversitas Journal of Biological Diversity, 22(7).
Iqbal, M. (2013). Prediction of body weight through body measurements in beetal goats. Pakistan Journal of Science, 65(4).
James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to statistical learning, volume 112. Springer.
Kramer, O. and Kramer, O. (2013). K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors, pages 13–23.
Liashchynskyi, P. and Liashchynskyi, P. (2019). Grid search, random search, genetic algorithm: a big comparison for nas. arXiv preprint arXiv:1912.06059.
Martins, B., Mendes, A., Silva, L., Moreira, T., Costa, J., Rotta, P., Chizzotti, M., and Marcondes, M. (2020). Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements. Livestock science, 236:104054.
Menesatti, P., Costa, C., Antonucci, F., Steri, R., Pallottino, F., and Catillo, G. (2014). A low-cost stereovision system to estimate size and weight of live sheep. Computers and Electronics in Agriculture, 103:33–38.
Muthukrishnan, R. and Rohini, R. (2016). Lasso: A feature selection technique in predictive modeling for machine learning. In 2016 IEEE international conference on advances in computer applications (ICACA), pages 18–20. Ieee.
NÓBREGA, A. and VERGNE, M. (2018). Novo censo agropecuário mostra crescimento de efetivo de caprinos e ovinos no nordeste. Empresa Brasileira de Pesquisa Agropecuária: Embrapa Caprinos e Ovinos.
Oliveira, M. (2019). Produção da pecuária municipal 2018. Catalog of the Instituto Brasileiro de Geografia e Estatística, 84(01014234):1–8.
Sabbioni, A., Beretti, V., Superchi, P., and Ablondi, M. (2020). Body weight estimation from body measures in cornigliese sheep breed. Italian Journal of Animal Science, 19(1):25–30.
Samperio, E., Lidón, I., Rebollar, R., Castejón-Limas, M., and Álvarez-Aparicio, C. (2021). Lambs’ live weight estimation using 3d images. Animal, 15(5):100212.
Sant’Ana, D. A., Pache, M. C. B., Martins, J., Soares, W. P., de Melo, S. L. N., Garcia, V., de Moares Weber, V. A., da Silva Heimbach, N., Mateus, R. G., and Pistori, H. (2021). Weighing live sheep using computer vision techniques and regression machine learning. Machine Learning with Applications, 5:100076.
Song, X., Bokkers, E., Van der Tol, P., Koerkamp, P. G., and Van Mourik, S. (2018). Automated body weight prediction of dairy cows using 3-dimensional vision. Journal of dairy science, 101(5):4448–4459.
Taud, H. and Mas, J.-F. (2018). Multilayer perceptron (mlp). Geomatic approaches for modeling land change scenarios, pages 451–455.
Published
2024-09-11
How to Cite
ARAÚJO, Rafael Luz; SILVA, Lilian Rosalina Gomes; SARMENTO, José Lindenberg Rocha; VELOSO E SILVA, Romuere Rodrigues.
Optimization of Regression Models for Predicting Weight in Small Ruminants Using Body Measurements. In: REGIONAL SCHOOL ON COMPUTING OF CEARÁ, MARANHÃO, AND PIAUÍ (ERCEMAPI), 12. , 2024, Parnaíba/PI.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 219-228.
DOI: https://doi.org/10.5753/ercemapi.2024.243763.
