Deep Learning to help combat gender violence: A representation of public data using Autoencoder network
Abstract
This paper presents the development of a autoencoder neural network model that allows the creation of representations about the data of violence against women that contribute to the identification of patterns, helping to cha- racterize the profile of the aggressors, aiming to assist in the analysis informa- tion in a more intuitive way and in combating violence.
Keywords:
Neural Network, Information Analysis, autoencoder
References
Bengio, Y., Goodfellow, I., and Courville, A. (2017). Deep learning, volume 1. MIT press Massachusetts, USA:.
Bilogur, A. (2020). Keras optimizers. Disponível em: https://www.kaggle.com/residentmario/keras-optimizers Acesso em: 10 Set. 2020.
Faroit (2020). Usage of metrics. Disponível em: https://faroit.com/keras-docs/1.2.0/metrics/ Acesso em: 11 Set. 2020.
Hassan1&2, N. and Akamatsu, N. (2004). A new approach for contrast enhancement using sigmoid function.
Igarape (2020). Eva. Disponível em: https://eva.igarape.org.br/ Acesso em: 05 Ago. 2020.
Koidl, K. (2013). Loss functions in classification tasks. School of Computer Science and Statistic Trinity College, Dublin.
Kusner, M. J., Paige, B., and Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. In International Conference on Machine Learning, pages 1945–1954. PMLR.
OACNUDH (2020). Modelo de protocolo latino-americano de investigaçao das mortes violentas de mulheres por razões de gênero (femicídio/feminicídio). Disponível em: [link] Acesso em: 05 Mai. 2020.
Rstudio, K. (2020). Train a keras model. Disponível em: https://keras.rstudio.com/reference/fit.html Acesso em: 08 Set. 2020.
Subramani, S., Michalska, S., Wang, H., Du, J., Zhang, Y., and Shakeel, H. (2019). Deep learning for multi-class identification from domestic violence online posts. IEEE Access, 7:46210–46224.
Vieira, P. R., Garcia, L. P., and Maciel, E. L. N. (2020). Isolamento social e o aumento da violência doméstica: o que isso nos revela? Revista Brasileira de Epidemiologia, 23:e200033.
Waiselfisz, J. J. (2012). Mapa da violência. CEP, 2722:000.
Yallico Arias, T. and Fabian, J. (2022). Automatic detection of levels of intimate partner violence against women with natural language processing using machine learning and deep learning techniques. In Lossio-Ventura, J. A., Valverde-Rebaza, J., Díaz, E., Muñante, D., Gavidia-Calderon, C., Valejo, A. D. B., and Alatrista-Salas, H., editors, Information Management and Big Data, pages 189–205, Cham. Springer International Publishing.
Bilogur, A. (2020). Keras optimizers. Disponível em: https://www.kaggle.com/residentmario/keras-optimizers Acesso em: 10 Set. 2020.
Faroit (2020). Usage of metrics. Disponível em: https://faroit.com/keras-docs/1.2.0/metrics/ Acesso em: 11 Set. 2020.
Hassan1&2, N. and Akamatsu, N. (2004). A new approach for contrast enhancement using sigmoid function.
Igarape (2020). Eva. Disponível em: https://eva.igarape.org.br/ Acesso em: 05 Ago. 2020.
Koidl, K. (2013). Loss functions in classification tasks. School of Computer Science and Statistic Trinity College, Dublin.
Kusner, M. J., Paige, B., and Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. In International Conference on Machine Learning, pages 1945–1954. PMLR.
OACNUDH (2020). Modelo de protocolo latino-americano de investigaçao das mortes violentas de mulheres por razões de gênero (femicídio/feminicídio). Disponível em: [link] Acesso em: 05 Mai. 2020.
Rstudio, K. (2020). Train a keras model. Disponível em: https://keras.rstudio.com/reference/fit.html Acesso em: 08 Set. 2020.
Subramani, S., Michalska, S., Wang, H., Du, J., Zhang, Y., and Shakeel, H. (2019). Deep learning for multi-class identification from domestic violence online posts. IEEE Access, 7:46210–46224.
Vieira, P. R., Garcia, L. P., and Maciel, E. L. N. (2020). Isolamento social e o aumento da violência doméstica: o que isso nos revela? Revista Brasileira de Epidemiologia, 23:e200033.
Waiselfisz, J. J. (2012). Mapa da violência. CEP, 2722:000.
Yallico Arias, T. and Fabian, J. (2022). Automatic detection of levels of intimate partner violence against women with natural language processing using machine learning and deep learning techniques. In Lossio-Ventura, J. A., Valverde-Rebaza, J., Díaz, E., Muñante, D., Gavidia-Calderon, C., Valejo, A. D. B., and Alatrista-Salas, H., editors, Information Management and Big Data, pages 189–205, Cham. Springer International Publishing.
Published
2022-06-01
How to Cite
JORNADA, Ana Luiza S.; RIVA, Aline Duarte.
Deep Learning to help combat gender violence: A representation of public data using Autoencoder network. In: REGIONAL SCHOOL ON COMPUTING OF RIO GRANDE DO SUL (ERCOMP-RS), 2. , 2022, Canoas.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 64-75.
DOI: https://doi.org/10.5753/ercomprs.2022.20407.
