Segmentação de Estradas em Mapas de Remissão utilizando Redes Neurais

  • Ludmila Dias IFES
  • Eduardo O. Ferreira IFES
  • Francisco de Assis Boldt IFES
  • Marcos V. Faria IFES
  • Thiago M. Paixão IFES

Resumo


Avanços na percepção para direção autônoma têm sido impulsionados pelo aprendizado profundo, que utiliza diversos sensores, como câmeras, LiDARs e radares, para obter uma compreensão precisa do ambiente. Neste contexto, nosso trabalho foca na segmentação semântica de estradas em mapas de remissão gerados por LiDAR. Comparando quatro arquiteturas de redes neurais convolucionais—U-Net, PSPNet, FPN e LinkNet—com o modelo ENet, nosso objetivo é avaliar o desempenho desses modelos em termos de acurácia média em relação ao ENet.

Referências

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixão, T. M., Mutz, F., de Paula Veronese, L., Oliveira-Santos, T., and De Souza, A. F. (2021). Self-driving cars: A survey. Expert Systems with Applications, 165:113816.

Bolimera, A., Muthalagu, R., Kalaichelvi, V., and Singh, A. (2023). Ego vehicle lane detection and key point determination using deep convolutional neural networks and inverse projection mapping. Transport and Telecommunication Journal, 24(2):110–119.

Carneiro, R. V., Nascimento, R. C., Guidolini, R., Cardoso, V. B., Oliveira-Santos, T., Badue, C., and De Souza, A. F. (2018). Mapping road lanes using laser remission and deep neural networks. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

Chaurasia, A. and Culurciello, E. (2017). Linknet: Exploiting encoder representations for efficient semantic segmentation. CoRR, abs/1707.03718.

Fagnant, D. J. and Kockelman, K. (2015). Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77:167–181.

Hao, S., Zhou, Y., and Guo, Y. (2020). A brief survey on semantic segmentation with deep learning. Neurocomputing, 406:302–321.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Lin, T., Dollár, P., Girshick, R. B., He, K., Hariharan, B., and Belongie, S. J. (2016). Feature pyramid networks for object detection. CoRR, abs/1612.03144.

Lin, T., Goyal, P., Girshick, R. B., He, K., and Dollár, P. (2017). Focal loss for dense object detection. CoRR, abs/1708.02002.

Martínez-Díaz, M. and Soriguera, F. (2018). Autonomous vehicles: theoretical and practical challenges. Transportation Research Procedia, 33:275–282.

Organização Pan-Americana da Saúde (2021). Oms lança década de ação pela segurança no trânsito 2021-2030. OPAS.

Paden, B., Cap, M., Yong, S. Z., Yershov, D., and Frazzoli, E. (2016). A survey of motion planning and control techniques for self-driving urban vehicles.

Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E. (2016). Enet: A deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597.

Schrank, D., Eisele, B., Lomax, T., and Bak, J. (2019). Urban mobility report.

Singh, R. and Rani, R. (2020). Semantic segmentation using deep convolutional neural network: A review. SSRN Electronic Journal, pages 1–8.

Wong, K., Gu, Y., and Kamijo, S. (2021). Mapping for autonomous driving: Opportunities and challenges. IEEE Intelligent Transportation Systems Magazine, 13(1):91–106.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2016). Pyramid scene parsing network. CoRR, abs/1612.01105.
Publicado
17/10/2024
DIAS, Ludmila; FERREIRA, Eduardo O.; BOLDT, Francisco de Assis; FARIA, Marcos V.; PAIXÃO, Thiago M.. Segmentação de Estradas em Mapas de Remissão utilizando Redes Neurais. In: ESCOLA REGIONAL DE INFORMÁTICA DO ESPÍRITO SANTO, 9. , 2024, Vitória/ES. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 147-156. DOI: https://doi.org/10.5753/eries.2024.244707.