Federated Training Applied to Left Ventricle Segmentation

  • Vinicios B. da Silva UFG
  • Renan R. de Oliveira UFG / IFG
  • Antonio Oliveira-Jr UFG / Fraunhofer Portugal AICOS
  • Ronaldo M. da Costa UFG

Abstract


The sensitive nature of medical data is a challenge for the use of centralized Machine Learning models. In contrast to traditional ML, Federated Learning allows models to be trained across institutions without sharing data. Therefore, this article presents a comparative analysis of the use of a traditional ML model for the segmentation of medical images compared to the FL paradigm, highlighting its benefits in the development of collaborative models.

References

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., and Lane, N. D. (2020). Flower: A Friendly Federated Learning Research Framework. arXiv, abs/2007.14390.

Bochie, K., Sammarco, M., Detyniecki, M., and Campista, M. (2021). Análise do Aprendizado Federado em Redes Móveis. In Anais do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 71–84, Porto Alegre, RS, Brasil. SBC.

Dou, Q., So, T. Y., Jiang, M., Liu, Q., Vardhanabhuti, V., Kaissis, G., Li, Z., Si, W., Lee, H. H. C., Yu, K., Feng, Z., Dong, L., Burian, E., Jungmann, F., Braren, R., Makowski, M., Kainz, B., Rueckert, D., Glocker, B., Yu, S. C. H., and Heng, P. A. (2021). Federated Deep Learning for Detecting COVID-19 Lung Abnormalities in CT: a Privacy-Preserving Multinational Validation Study. Digital Medicine.

Flores, M., Dayan, I., Roth, H., Zhong, A., Harouni, A., Gentili, A., Abidin, A., Liu, A., Costa, A., Wood, B., Tsai, C., CH Wang, C. H., and Wen, Y. (2021). Federated Learning used for Predicting Outcomes in SARS-COV-2 Patients. Nat Med.

Joshi, M., Pal, A., and Sankarasubbu, M. (2022). Federated Learning for Healthcare Domain - Pipeline, Applications and Challenges. ACM Trans. Comput. Healthc.

Li, M., Soltanolkotabi, M., and Oymak, S. (2020). Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks. In International Conference on Artificial Intelligence and Statistics, pages 4313–4324. PMLR.

Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., and He, B. (2021). A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and Data Engineering.

Li, W., Milletarı̀, F., Xu, D., Rieke, N., Hancox, J., Zhu, W., Baust, M., Cheng, Y., Ourselin, S., Cardoso, M. J., et al. (2019). Privacy-preserving Federated Brain Tumour Segmentation. In Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings 10, pages 133–141. Springer.

Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D., and Miao, C. (2020). Federated Learning in Mobile Edge Networks: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 22(3):2031–2063.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2023). Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv.

Ouyang, D., He, B., Ghorbani, A., Lungren, M. P., Ashley, E. A., Liang, D. H., and Zou, J. Y. (2019). EchoNet-Dynamic: a Large New Cardiac Motion Video Data Resource for Medical Machine Learning. Computer Science, Medicine.
Published
2023-12-07
DA SILVA, Vinicios B.; DE OLIVEIRA, Renan R.; OLIVEIRA-JR, Antonio; DA COSTA, Ronaldo M.. Federated Training Applied to Left Ventricle Segmentation. In: REGIONAL SCHOOL ON INFORMATICS OF GOIÁS (ERI-GO), 11. , 2023, Goiânia/GO. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . DOI: https://doi.org/10.5753/erigo.2023.237317.