Federated Learning-Based Approach for Intrusion Detection in Computer Networks

  • Alexsander Damaceno UFG
  • Maria do Rosário C. Ribeiro UFG / INESC-TEC
  • Antonio Oliveira-Jr UFG / Fraunhofer Portugal AICOS
  • Renan R. de Oliveira UFG / IFG

Abstract


The rapid expansion of digital networks and the growing number of computer security incidents, the need for methods for preventing and detecting malicious activities becomes evident. Traditional approaches to network intrusion detection often face limitations in scalability, privacy, and adaptability. This article explores Federated Learning (FL) as a solution to address these challenges. By decentralizing the training process and preserving data privacy at the source, FL empowers network administrators to collaboratively build robust anomaly detection models without sharing sensitive information.

References

Amannejad, Y. (2020). Building and Evaluating Federated Models for Edge Computing. In 2020 16th International Conference on Network and Service Management (CNSM), pages 1–5.

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., and Lane, N. D. (2020). Flower: A Friendly Federated Learning Research Framework. CoRR, abs/2007.14390.

Chen, Z., Lv, N., Liu, P., Fang, Y., Chen, K., and Pan, W. (2020). Intrusion Detection for Wireless Edge Networks based on Federated Learning. IEEE Access, 8:217463–217472.

de Oliveira, J. A., Meneguette, R. I., Gonçalves, V. P., de Sousa Jr, R. T., Guidoni, D. L., Oliveira, J. C., and Rocha Filho, G. P. (2023). F-NIDS–Sistema de detecção de Intrusao descentralizado com base em Aprendizado Federado. In Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 29–42. SBC.

dos Santos, L. L. S., Machado, R. B., and dos Santos Vieira, G. (2018). Proposta de Ambiente Experimental para Avaliação de Sistemas de Detecção de Intrusão. BTSYM 2018 Proceedings.

Kayacik, H., Zincir-Heywood, A.N., and Heywood, M. (2005). Selecting Features for Intrusion Detection: A Feature Relevance Analysison KDD 99. In Proceedings of the Third Annual Conference on Privacy, Security and Trust.

KDD-99 (1999). Kdd Cup 1999 Data. disponível em: [link].

Khan, L. U., Saad, W., Han, Z., Hossain, E., and Hong, C. S. (2021). Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Communications Surveys & Tutorials, 23(3):1759–1799.

Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., and He B. (2021). A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. IEEE Transactions on Knowledge and Data Engineering, PP:1–1.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2023). Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv.

Neto, H. N. C., Mattos, D. M. F., and Fernandes, N. C. (2020). Privacidade do Usuario em Aprendizado Colaborativo: Federated Learning, da Teoria à Pratica. In Livro de Minicursos do SBSEG 2020. Sociedade Brasileira de Computação. SBC.

Niksefat, S., Kaghazgaran, P., and Sadeghiyan, B. (2017). Privacy Issues in Intrusion Detection Systems: A Taxonomy, Survey and Future Directions. Computer Science Review, 25:69–78.

Veiga, R., Both, C. B., Medeiros, I., Rosario, D., and Cerqueira, E. (2023). A Federated Learning Approach for Authentication and User Identification based on Behavioral Biometrics. In Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 15–28. SBC.

Yang, Z., Chen, M., Wong, K.-K., Poor, H. V., and Cui, S. (2022). Federated Learning for 6G: Applications, Challenges, and Opportunities. Engineering, 8:33–41.
Published
2023-12-07
DAMACENO, Alexsander; C. RIBEIRO, Maria do Rosário; OLIVEIRA-JR, Antonio; DE OLIVEIRA, Renan R.. Federated Learning-Based Approach for Intrusion Detection in Computer Networks. In: REGIONAL SCHOOL ON INFORMATICS OF GOIÁS (ERI-GO), 11. , 2023, Goiânia/GO. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . DOI: https://doi.org/10.5753/erigo.2023.237320.