Evaluation of Bioinspired Algorithms in the Generation of Personalized Routes in Iporá-GO
Abstract
The formation of routes can be attributed to the fundamental human need for movement and exploration. Well-defined routes provide a basis for decision-making and function as guides to reach specific destinations. In this context, the objective of this study is to evaluate the efficiency and effectiveness of a series of optimization algorithms, namely Ant Colony Optimization, Bat Algorithm, Bee Colony Optimization, Cuckoo Search, Firefly Algorithm, Genetic Algorithm, and Particle Swarm Optimization, in generating personalized routes based on points of interest within the city of Iporá-GO. The results indicate that the Ant Colony Optimization algorithm has the potential to identify viable solutions within the context of Iporá-GO.
Keywords:
bioinspired algorithms, optimization, personalized routes, Iporá-GO, Ant Colony Optimization
References
Araruna, A. R. (2013). Caminho mínimo com restrição probabilística de atraso máximo.
Azis, N., Amin, M., Chan, S., and Aprilia, C. (2020). How smart tourism technologies affect tourist destination loyalty. Journal of Hospitality and Tourism Technology, 11(4):603–625.
Baggio, R., Micera, R., and Del Chiappa, G. (2020). Smart tourism destinations: a critical reflection. Journal of Hospitality and Tourism Technology, 11(3):407–423.
BARBOSA, C. E. M. (2017). Algoritmos bio-inspirados para solução de problemas de otimização. Master’s thesis, Universidade Federal de Pernambuco.
Barreira, N. M. C. (2016). Sistema Inteligente para Otimização de Rotas. PhD thesis.
Bhatt, M., Sharma, S., Luhach, A. K., and Prakash, A. (2016). Nature inspired route optimization in vehicular adhoc network. pages 447–451.
Bueno, L. and Borges, J. (2017). A segregação espacial urbana de iporá (go). Revista Sapiência: Sociedade, Saberes e Práticas Educacionais, 6:172–191.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to algorithms. MIT press.
Fournier, P. F. M. (2022). Otimização de rotas: planeamento em viaturas pesadas. PhD thesis.
Gao, S. (2012). Bio-Inspired Computational Algorithms and Their Applications. BoD–Books on Demand.
Gavalas, D., Kasapakis, V., Konstantopoulos, C., Pantziou, G., and Vathis, N. (2017). Scenic route planning for tourists. Personal and Ubiquitous Computing, 21:137–155.
Jeong, M. and Shin, H. H. (2020). Tourists’ experiences with smart tourism technology at smart destinations and their behavior intentions. Journal of Travel Research, 59(8):1464–1477.
Jünger, M., Reinelt, G., and Rinaldi, G. (1995). The traveling salesman problem. Handbooks in operations research and management science, 7:225–330.
Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms for optimization. Mit Press.
Luger, G. F. (2004). Inteligência Artificial-: Estruturas e estratégias para a solução de problemas complexos. Bookman.
Ma, X. (2016). Intelligent tourism route optimization method based on the improved genetic algorithm. pages 124–127.
Neves, M. C. D., Silva, L. F., Silva, M. E. M. T., and Fernandes, C. Y. C. (2021). Medindo o raio da terra: Uma experiência no ensino.
Paine, L. (2014). The sea and civilization: a maritime history of the world. Atlantic Books Ltd.
Sinnott, R. W. (1984). Virtues of the haversine. Sky and telescope, 68(2):158.
Souffriau, W. and Vansteenwegen, P. (2010). Tourist trip planning functionalities: state-of-the-art and future. In 10th International conference on Web Engineering (ICWE 2010), volume 6385, pages 474–485. Springer.
Xiong, J. (2022). Optimization model of tourist transportation route based on multi-neuron algorithm. pages 1161–1164.
Zhang, W., Xing, Z., Yang, D., Hou, W., Wang, C., and Gen, M. (2019). Multiobjective particle swarm optimization with improved selection strategy for route optimization. pages 205–209.
Azis, N., Amin, M., Chan, S., and Aprilia, C. (2020). How smart tourism technologies affect tourist destination loyalty. Journal of Hospitality and Tourism Technology, 11(4):603–625.
Baggio, R., Micera, R., and Del Chiappa, G. (2020). Smart tourism destinations: a critical reflection. Journal of Hospitality and Tourism Technology, 11(3):407–423.
BARBOSA, C. E. M. (2017). Algoritmos bio-inspirados para solução de problemas de otimização. Master’s thesis, Universidade Federal de Pernambuco.
Barreira, N. M. C. (2016). Sistema Inteligente para Otimização de Rotas. PhD thesis.
Bhatt, M., Sharma, S., Luhach, A. K., and Prakash, A. (2016). Nature inspired route optimization in vehicular adhoc network. pages 447–451.
Bueno, L. and Borges, J. (2017). A segregação espacial urbana de iporá (go). Revista Sapiência: Sociedade, Saberes e Práticas Educacionais, 6:172–191.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to algorithms. MIT press.
Fournier, P. F. M. (2022). Otimização de rotas: planeamento em viaturas pesadas. PhD thesis.
Gao, S. (2012). Bio-Inspired Computational Algorithms and Their Applications. BoD–Books on Demand.
Gavalas, D., Kasapakis, V., Konstantopoulos, C., Pantziou, G., and Vathis, N. (2017). Scenic route planning for tourists. Personal and Ubiquitous Computing, 21:137–155.
Jeong, M. and Shin, H. H. (2020). Tourists’ experiences with smart tourism technology at smart destinations and their behavior intentions. Journal of Travel Research, 59(8):1464–1477.
Jünger, M., Reinelt, G., and Rinaldi, G. (1995). The traveling salesman problem. Handbooks in operations research and management science, 7:225–330.
Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms for optimization. Mit Press.
Luger, G. F. (2004). Inteligência Artificial-: Estruturas e estratégias para a solução de problemas complexos. Bookman.
Ma, X. (2016). Intelligent tourism route optimization method based on the improved genetic algorithm. pages 124–127.
Neves, M. C. D., Silva, L. F., Silva, M. E. M. T., and Fernandes, C. Y. C. (2021). Medindo o raio da terra: Uma experiência no ensino.
Paine, L. (2014). The sea and civilization: a maritime history of the world. Atlantic Books Ltd.
Sinnott, R. W. (1984). Virtues of the haversine. Sky and telescope, 68(2):158.
Souffriau, W. and Vansteenwegen, P. (2010). Tourist trip planning functionalities: state-of-the-art and future. In 10th International conference on Web Engineering (ICWE 2010), volume 6385, pages 474–485. Springer.
Xiong, J. (2022). Optimization model of tourist transportation route based on multi-neuron algorithm. pages 1161–1164.
Zhang, W., Xing, Z., Yang, D., Hou, W., Wang, C., and Gen, M. (2019). Multiobjective particle swarm optimization with improved selection strategy for route optimization. pages 205–209.
Published
2024-12-05
How to Cite
FRANCO, Guilherme C.; CARDOSO, Luciana R.; CARVALHO, Sergio T.; BERRETTA, Luciana O..
Evaluation of Bioinspired Algorithms in the Generation of Personalized Routes in Iporá-GO. In: REGIONAL SCHOOL ON INFORMATICS OF GOIÁS (ERI-GO), 12. , 2024, Ceres/GO.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 51-60.
DOI: https://doi.org/10.5753/erigo.2024.4794.
