Parkinson’s Disease Classification Employing a Questionnaire of Non-motor Symptoms and Machine Learning Methods

  • Rafael Alves Padilha UFG
  • Juliana Paula Felix UFG
  • Rogerio Salvini UFG

Resumo


This work presents a machine learning approach to aid in the classification of Parkinson’s disease (PD). Answers to a 30-question non-motor symptoms questionnaire are used as input for two classifiers that focus on differentiating Parkinson’s subjects (PD) from healthy subjects and PD vs. patients with differential diagnoses. The method was evaluated using a cross-validation technique, and the results surpass those in the literature.

Palavras-chave: Parkinson’s disease, machine learning, non-motor symptoms, questionnaire, classification

Referências

da Silva, M. I., Felix, J. P., de Stecca Prado, T., de Bastos Chagas, A. L., Bucci, G. d. F. F. B., da Fonseca, A. U., and Soares, F. (2024). Sobre a análise de sinais de voz para o diagnóstico da doença de parkinson. Journal of Health Informatics, 16(Especial).

Félix, J. P., Vieira, F. H., Cardoso, Á. A., Ferreira, M. V., Franco, R. A., Ribeiro, M. A., Araújo, S. G., Corrêa, H. P., and Carneiro, M. L. (2019). A Parkinson’s disease classification method: an approach using gait dynamics and detrended fluctuation analysis. In 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), pages 1–4. IEEE.

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79(4):368–376.

Varghese, J., Brenner, A., Fujarski, M., van Alen, C. M., Plagwitz, L., and Warnecke, T. (2024a). Machine Learning in the Parkinson’s disease smartwatch (PADS) dataset. npj Parkinson’s Disease, 10(1):9.

Varghese, J., Brenner, A., Plagwitz, L., van Alen, C., Fujarski, M., and Warnecke, T. (2024b). PADS-Parkinsons Disease Smartwatch dataset. [link].
Publicado
05/12/2024
PADILHA, Rafael Alves; FELIX, Juliana Paula; SALVINI, Rogerio. Parkinson’s Disease Classification Employing a Questionnaire of Non-motor Symptoms and Machine Learning Methods. In: ESCOLA REGIONAL DE INFORMÁTICA DE GOIÁS (ERI-GO), 12. , 2024, Ceres/GO. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 251-252. DOI: https://doi.org/10.5753/erigo.2024.5091.