A review on the infrastructure and tool support for Model-Driven Engineering in the automation of the petrochemical industry

Resumo


Automation is a fundamental part of the oil industry, responsible for ensuring productivity and process safety. The application of control systems is carried out through different software applications, which are often unable to exchange data (models) within each other. This is a significant limitation for the overall design process. To address this issue, the use of the Model-Driven Engineering for Petrochemical Industry Automation (M4PIA) platform is proposed. M4PIA is capable of accommodating the software applications Automated Procedures Module (MPA) and Environment for Modeling, Simulation, and Operation (EMSO), both of which are used by the Brazilian state-owned company Petrobras.

Palavras-chave: MDE, M4PIA infrastructure, EMSO, MPA, Graphical DSL

Referências

Cruz, M. V. S. (2021). Engenharia reversa baseada em modelos para aplicações de simulação, controle e operação de plantas na indústria petroquímica. Master’s thesis, Federal University of Santa Catarina.

Damo, T. P. (2019). Engenharia baseada em modelos para aplicações de simulação, controle e operação de plantas na indústria petroquímica. Master’s thesis, Federal University of Santa Catarina.

Damo, T. P., Becker, L. B., and Basso, F. P. (2019). Model-Driven Engineering Infrastructure and Tool Support for Petrochemical Industry Automation. Advances in Science, Technology and Engineering Systems Journal, 4(4):174–187.

de Souza Moura, J. (2022). Uma dsl grafica de suporte para a infraestrutura m4pia. Tcc (graduation), Federal University of Pampa.

Favre, J.-M. (2004). Foundations of model (driven) (reverse) engineering : Models - episode i: Stories of the fidus papyrus and of the solarus. In Language Engineering for Model-Driven Software Development.

Foundation, E. (2023a). Acceleo. Available at: https://eclipse.dev/acceleo/. Accessed on: 16 July 2023.

Foundation, E. (2023b). Eclipse qvt operational. Available at: https://projects.eclipse.org/projects/modeling.mmt.qvt-oml. Accessed on: 16 July 2023.

Foundation, E. (2023c). Sirius. Available at: https://eclipse.dev/sirius. Accessed on: 18 July 2023.

Frohm, J., Lindström, V., Winroth, M., and Stahre, J. (2006). The industry’s view onautomation in manufacturing. IFAC Proceedings Volumes, 39(4):453–458. 9th IFAC Symposium on Automated Systems Based on Human Skill and Knowledge.

Guisasola, T. and Maia, R. (2009). Mpa, um sistema de controle de plantas industriais. In Lua Workshop 2009, Rio de Janeiro, RJ, Brasil. Available at: https://www.lua.org/wshop09/mpa.pdf. Accessed on: 15 July 2023.

JANEIRO, P. U. C. D. R. D. (1993). The programming language lua. Available at: https://www.lua.org/. Accessed on: 15 July 2023.

Klatt, K.-U. and Marquardt, W. (2009). Perspectives for process systems engineering—personal views from academia and industry. Computers Chemical Engineering, 33(3):536–550. Selected Papers from the 17th European Symposium on Computer Aided Process Engineering held in Bucharest, Romania, May 2007.

Lima, Y., Rodrigues, E., Basso, F., and Oliveira, R. (2021). Teasy: A domain-specific language to reduce time and facilitate the creation of tests in web applications. In Anais do III Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 40–49, Porto Alegre, RS, Brasil. SBC.

Mailund, T. (2018). Domain-Specific Languages in R: Advanced Statistical Programming. Apress, USA, 1st edition.

Otto, L. (2017). DSL: Quebre a barreira entre desenvolvimento e negócios. Casa do Código.

Parr, T. (2023). Antlr. Available at: https://www.antlr.org/. Accessed on: 16 July 2023.

Raibulet, C., Arcelli Fontana, F., and Zanoni, M. (2017). Model-driven reverse engineering approaches: A systematic literature review. IEEE Access, 5:14516–14542.

Rugaber, S. and Stirewalt, K. (2004). Model-driven reverse engineering. IEEE Softw., 21(4):45–53.

Satuf, E., Pinto, S. F., and Dias, B. Q. (2009). Automatic alignment system for pra-1 pumping platform (in portuguese). In 5th Rio Automation Congress.

Schmidt, D. (2006). Guest editor’s introduction: Model-driven engineering. Computer, 39(2):25–31.

Seborg, D. E., Mellichamp, D. A., and Edgar, T. F. (2010). Process Dynamics and Control. John Wiley & Sons.

Soares, R. d. P. and Secchi, A. (2003). EMSO: A new environment for modelling, simulation and optimisation. In Computer Aided Chemical Engineering, volume 14, pages 947–952. Elsevier.

Sommerville, I. (2011). Software Engineering. Pearson.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008). EMF: Eclipse Modeling Framework. ddison-Wesley Professional.

Teixeira, P., Lebtag, B., and Basso, F. (2020). Diversity of mde toolboxes and their uncommon properties. In Anais do II Workshop em Modelagem e Simulação de Sistemas Intensivos em Software, pages 1–10, Porto Alegre, RS, Brasil. SBC.

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages: An annotated bibliography. SIGPLAN Not., 35(6):26–36.

Vepsäläinen, T., Sierla, S., Peltola, J., and Kuikka, S. (2010). Assessing the industrial applicability and adoption potential of the aukoton model driven control application engineering approach. In 2010 8th IEEE International Conference on Industrial Informatics, pages 883–889.
Publicado
25/09/2023
CORREIA, Carlos Eduardo Xavier; BECKER, Leandro Buss; BASSO, Fabio Paulo. A review on the infrastructure and tool support for Model-Driven Engineering in the automation of the petrochemical industry. In: WORKSHOP EM MODELAGEM E SIMULAÇÃO DE SISTEMAS INTENSIVOS EM SOFTWARE (MSSIS), 5. , 2023, Campo Grande/MS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 31-40. DOI: https://doi.org/10.5753/mssis.2023.235679.