Analysis of Music Success in Brazil Using Twitter Data

Abstract


Our goal is to analyze how Twitter data relates to the success of musical artistic careers. First, we collect data on tweets, number of likes and retweets for each artist profile from Spotify Charts in the Brazil. From the data collected, we build time series to represent the career of each artist, and then we investigate whether the most successful periods occur close to each other. Such exploratory analysis helps to identify temporal patterns that can reveal the existence of hot streaks, i.e., periods of above-normal success. Finally, we analyze the most frequent terms before and after the artists' peaks of success.
Keywords: Social Network, Twitter, Music

References

Abel, F. et al. (2010). Analyzing the blogosphere for predicting the success of music and movie products. In ASONAM, pages 276-280, Odense, Denmark.

Araujo, C. V. et al. (2017). Predicting music success based on users’ comments on online social networks. In WebMedia, pages 149-156, Brazil.

Calefato, F. et al. (2018). Collaboration success factors in an online music community. In ACM GROUP, Sanibel Island, USA.

Çimen, A. and Kayis, E. (2021). A longitudinal model for song popularity prediction. In DATA, pages 96-104. SciTePress.

Cosimato, A. et al. (2019). The conundrum of success in music: Playing it or talking about it? IEEE Access, 7:123289-123298.

Dewan, S. and Ramaprasad, J. (2014). Social media, traditional media, and music sales. Mis Quarterly, 38(1).

Garimella, K. and West, R. (2019). Hot streaks on social media. In International Conference on Web and Social Media, pages 170-180. AAAI Press.

Liu, L., Wang, Y., Sinatra, R., Giles, C. L., Song, C., and Wang, D. (2018). Hot streaks in artistic, cultural, and scientific careers. Nature, 559(7714):396-399.

Martín-Gutiérrez, D. et al. (2020). A multimodal end-to-end deep learning architecture for music popularity prediction. IEEE Access, 8:39361-39374.

Oliveira, G. P., Silva, M. O., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2020). Detecting collaboration profiles in success-based music genre networks. In ISMIR, pages 726-732.

Pachet, F. (2011). Hit song science. In Tao Li, Mitsunori Ogihara, G. T., editor, Music Data Mining, chapter 10, pages 305-326. CRC Press, New York, NY, USA.

Ren, J. and Kauffman, R. J. (2017). Understanding music track popularity in a social network. In ECIS, pages 374-388, Guimarães, Portugal. AIS.

Rousidis, D., Koukaras, P., and Tjortjis, C. (2020). Social media prediction: a literature review. Multimedia Tools and Applications, 79(9):6279-6311.

Seufitelli, D. B., Oliveira, G. P., Silva, M. O., Barbosa, G. R. G., Melo, B. C., Botelho, J. E., Melo-Gomes, L. d., and Moro, M. M. (2022). From compact discs to streaming: A comparison of eras within the brazilian market. Revista Vórtex , 10(1).

Silva, M. O., Rocha, L. M., and Moro, M. M. (2019). Collaboration Profiles and Their Impact on Musical Success. In ACM SAC, pages 2070-2077, Limassol, Cyprus.

Trindade, I. et al. (2021). Análise das letras das músicas brasileiras mais tocadas nas rádios das Últimas seis décadas. In SBBD WTAG, pages 1-7. SBC.

Vötter, M. et al. (2021). Novel datasets for evaluating song popularity prediction tasks. In IEEE International Symposium on Multimedia (ISM), pages 166-173. IEEE.
Published
2022-09-19
MELO-GOMES, Luiza de; SEUFITELLI, Danilo B.; OLIVEIRA, Gabriel P.; SILVA, Mariana O.; MORO, Mirella M.. Analysis of Music Success in Brazil Using Twitter Data. In: WORKSHOP ON UNDERGRADUATE STUDENT WORK (WTAG) - BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 37. , 2022, Búzios. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 40-46. DOI: https://doi.org/10.5753/sbbd_estendido.2022.21841.