STMotif Explorer: A Tool for Spatiotemporal Motif Analysis

  • Heraldo Borges Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)
  • Antonio Castro Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)
  • Rafaelli Coutinho Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)
  • Fabio Porto Laboratório Nacional de Computação Científica (LNCC)
  • Esther Pacitti University of Montpellier / INRIA
  • Eduardo Ogasawara Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)

Resumo


Pattern discovery is an important task in time series mining. A pattern that occurs a significant number of times in a time series is called a motif. Several approaches have been developed to discover motifs in time series. However, we can observe a clear gap in exploring the spatial-time series data. It is challenging to understand and characterize the meaning of the motif obtained concerning the data domain, comparing different approaches and analyzing the quality of the results obtained. We propose STMotif Explorer, a spatial-time motif analysis system that aims to interactively discover and visualize spatial-time motifs in different domains, offering insight to users. STMotif Explorer enables users to use and implement novel spatiotemporal motif detection techniques and then run this across various domains. Besides, STMotif Explorer offers the users a set of interactive resources where it is possible to visualize and analyze the discovered motifs and compare the results from different techniques. We show the features of our system with different approaches using real data.
Palavras-chave: Motif, Spatial-temporal, Visualization

Referências

Bischoff, F. and Rodrigues, P. (2020). tsmp: An R Package for Time Series with Matrix Profile. R Journal, 12(1):76–86.

Borges, H., Dutra, M., Bazaz, A., Coutinho, R., Perosi, F., Porto, F., Masseglia, F., Pacitti, E., and Ogasawara, E. (2020). Spatial-time motifs discovery. Intelligent Data Analysis, 24(5):1121–1140.

dgbes (2018). Netherlands Offshore F3 Block - Complete. Technical report, [link].

Eichmann, P., Tatbul, N., Solleza, F., and Zdonik, S. (2019). Visual exploration of time series anomalies with metro-viz. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 1901–1904.

Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., and Nystrom, D. M. (2004). VizTree: a tool for visually mining and monitoring massive time series databases. In Proceedings of the Thirtieth international conference on Very large data bases - Volume 30, VLDB ’04, pages 1269–1272, Toronto, Canada. VLDB Endowment.

Linardi, M., Zhu, Y., Palpanas, T., and Keogh, E. (2020). Matrix profile goes MAD: variable-length motif and discord discovery in data series. Data Mining and Knowledge Discovery, 34(4):1022–1071.

Oates, T., Boedihardjo, A., Lin, J., Chen, C., Frankenstein, S., and Gandhi, S. (2013). Motif discovery in spatial trajectories using grammar inference. In International Conference on Information and Knowledge Management, Proceedings, pages 1465–1468.

Ramanujam, E. and Padmavathi, S. (2022). Comprehensive review on time series motif discovery using evolutionary techniques. International Journal of Advanced Intelligence Paradigms, 23(1-2):155–170.

Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A., Chen, C., Frankenstein, S., and Lerner, M. (2014). GrammarViz 2.0: A tool for grammar-based pattern discovery in time series. Lecture Notes in Computer Science, 8726 LNAI(PART 3):468–472.

Shekhar, S., Feiner, S., and Aref, W. (2016). Spatial computing. Communications of the ACM, 59(1):72–81.

Torkamani, S. and Lohweg, V. (2017). Survey on time series motif discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(2).

Yeh, C. C., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H., Zimmerman, Z., Silva, D., Mueen, A., and Keogh, E. (2018). Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile. Data Mining and Knowledge Discovery, 32(1):83–123.
Publicado
25/09/2023
BORGES, Heraldo; CASTRO, Antonio; COUTINHO, Rafaelli; PORTO, Fabio; PACITTI, Esther; OGASAWARA, Eduardo. STMotif Explorer: A Tool for Spatiotemporal Motif Analysis. In: DEMONSTRAÇÕES E APLICAÇÕES - SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 38. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 114-119. DOI: https://doi.org/10.5753/sbbd_estendido.2023.233371.