Caramel Framework: An Ecosystem of Big Social Data

  • Paulo Freitas Silva Júnior Federal University of Rio de Janeiro
  • Tiago França Federal Rural University of Rio de Janeiro
  • Jonice Oliveira Federal University of Rio de Janeiro

Abstract


People engage on social media, producing and propagating (at high speed) large volumes of semantically rich data of information. These characteristics are related to the Big Social Data (BSD) area and research. Even facing the possibilities, the extraction of information from works aligned with the BSD concept is related to rework, lack of technical and human resources and little collaboration. This proposal presents a Framework for BSD Ecosystems that guides the creation of artifacts and the sharing of these and other useful resources to deal with the collection, processing, storage, analysis and visualization of social data.

Keywords: big social data, social data processing

References

Al-Obeidat, F., Bani-Hani, A., Adedugbe, O., Majdalawieh, M., and Benkhelifa, E. (2021). A microservices persistence technique for cloud-based online social data analysis. Cluster Computing, 24(3):2341–2353.

B. Lima, G. d. F., S. Oliveira, M. I., and Farias Lóscio, B. (2022). FASED: A Framework for Data Ecosystems Health Evaluation. Journal of Information and Data Management, 13(3).

França, T. C., de Faria, F. F., Rangel, F. M., de Farias, C. M., and Oliveira, J. (2014). Big Social Data: Princípios sobre Coleta, Tratamento e Análise de Dados Sociais, volume d.

Hargreaves, E., Mangabeira, E. F., Oliveira, J., Franca, T. C., and Mcnasché, D. S. (2020). Facebook news feed personalization filter: a case study during the brazilian elections. In 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 615–618, Netherlands. IEEE, IEEE.

Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y., and Kalinowski, M. (2021). Data management in microservices: State of the practice, challenges, and research directions. CoRR, abs/2103.00170:70–75.

Lima Filho, S. P., Oliveira, J., and da Silva, M. F. (2020). Detection of depression symptoms using social media data. Simpósio Brasileiro de Banco de Dados (SBBD), 2020:3–8.

Olshannikova, E., Olsson, T., Huhtamäki, J., and Kärkkäinen, H. (2017). Conceptualizing Big Social Data. Journal of Big Data, 4(1):3.

Perikos, I. and Hatzilygeroudis, I. (2018). A Framework for Analyzing Big Social Data and Modelling Emotions in Social Media. In 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), pages 80– 84. IEEE.

Rehem, D., Oliveira, J., França, T., Brito, W., and Motta, C. (2016). News recommendation based on tweets for understanding of opinion variation and events. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, pages 1182–1185, New York, NY, USA. ACM.

S. Oliveira, M. I., Barros Lima, G. d. F., and Farias Lóscio, B. (2019). Investigations into Data Ecosystems: a systematic mapping study. Knowledge and Information Systems, 61(2):589–630.

Wang, X., Duan, Q., and Liang, M. (2021). Understanding the process of data reuse: An extensive review. Journal of the Association for Information Science and Technology, 72(9):1161–1182.
Published
2023-09-25
SILVA JÚNIOR, Paulo Freitas; FRANÇA, Tiago; OLIVEIRA, Jonice. Caramel Framework: An Ecosystem of Big Social Data. In: WORKSHOP ON THESIS AND DISSERTATION (WTDBD) - BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 38. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 167-173. DOI: https://doi.org/10.5753/sbbd_estendido.2023.233766.