Caramel Framework: An Ecosystem of Big Social Data
Abstract
People engage on social media, producing and propagating (at high speed) large volumes of semantically rich data of information. These characteristics are related to the Big Social Data (BSD) area and research. Even facing the possibilities, the extraction of information from works aligned with the BSD concept is related to rework, lack of technical and human resources and little collaboration. This proposal presents a Framework for BSD Ecosystems that guides the creation of artifacts and the sharing of these and other useful resources to deal with the collection, processing, storage, analysis and visualization of social data.
References
B. Lima, G. d. F., S. Oliveira, M. I., and Farias Lóscio, B. (2022). FASED: A Framework for Data Ecosystems Health Evaluation. Journal of Information and Data Management, 13(3).
França, T. C., de Faria, F. F., Rangel, F. M., de Farias, C. M., and Oliveira, J. (2014). Big Social Data: Princípios sobre Coleta, Tratamento e Análise de Dados Sociais, volume d.
Hargreaves, E., Mangabeira, E. F., Oliveira, J., Franca, T. C., and Mcnasché, D. S. (2020). Facebook news feed personalization filter: a case study during the brazilian elections. In 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 615–618, Netherlands. IEEE, IEEE.
Laigner, R., Zhou, Y., Salles, M. A. V., Liu, Y., and Kalinowski, M. (2021). Data management in microservices: State of the practice, challenges, and research directions. CoRR, abs/2103.00170:70–75.
Lima Filho, S. P., Oliveira, J., and da Silva, M. F. (2020). Detection of depression symptoms using social media data. Simpósio Brasileiro de Banco de Dados (SBBD), 2020:3–8.
Olshannikova, E., Olsson, T., Huhtamäki, J., and Kärkkäinen, H. (2017). Conceptualizing Big Social Data. Journal of Big Data, 4(1):3.
Perikos, I. and Hatzilygeroudis, I. (2018). A Framework for Analyzing Big Social Data and Modelling Emotions in Social Media. In 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), pages 80– 84. IEEE.
Rehem, D., Oliveira, J., França, T., Brito, W., and Motta, C. (2016). News recommendation based on tweets for understanding of opinion variation and events. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, pages 1182–1185, New York, NY, USA. ACM.
S. Oliveira, M. I., Barros Lima, G. d. F., and Farias Lóscio, B. (2019). Investigations into Data Ecosystems: a systematic mapping study. Knowledge and Information Systems, 61(2):589–630.
Wang, X., Duan, Q., and Liang, M. (2021). Understanding the process of data reuse: An extensive review. Journal of the Association for Information Science and Technology, 72(9):1161–1182.
