Prompting and Fine-tuning Pre-trained Generative Language Models

Resumo


There has been an explosion of available pre-trained and fine-tuned Generative Language Models (LM). They vary in the number of parameters, architecture, training strategy, and training set size. Aligned with it, alternative strategies exist to exploit these models, such as Fine-tuning and Prompt Engineering. However, many questions may arise throughout this process: Which model to apply for a given task? Which strategies to use? Will Prompt Engineering solve all tasks? What are the computational and financial costs involved? This tutorial will introduce and explore typical modern LM architectures with a hands-on approach to the available strategies.
Palavras-chave: Generative Language Models, Prompt Engineering, Fine-tuning, Natural Language Processing

Referências

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized llms. CoRR, abs/2305.14314.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: pre-training of deep bidirectional transformers for language understanding. In Burstein, J., Doran, C., and Solorio, T., editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.

Dey, N., Gosal, G., Chen, Z., Khachane, H., Marshall, W., Pathria, R., Tom, M., and Hestness, J. (2023). Cerebras-gpt: Open compute-optimal language models trained on the cerebras wafer-scale cluster. CoRR, abs/2304.03208.

Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y., Chan, C., Chen, W., Yi, J., Zhao, W., Wang, X., Liu, Z., Zheng, H., Chen, J., Liu, Y., Tang, J., Li, J., and Sun, M. (2023). Parameter-efficient fine-tuning of large-scale pre-trained language models. Nat. Mac. Intell., 5(3):220–235.

Gururangan, S., Marasovic, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., and Smith, N. A. (2020). Don’t stop pretraining: Adapt language models to domains and tasks. In Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J. R., editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 8342–8360. Association for Computational Linguistics.

Hsieh, C., Li, C., Yeh, C., Nakhost, H., Fujii, Y., Ratner, A., Krishna, R., Lee, C., and Pfister, T. (2023). Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes. In Rogers, A., Boyd-Graber, J. L., and Okazaki, N., editors, Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pages 8003–8017. Association for Computational Linguistics.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv., 55(9):195:1–195:35.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67.

Zamfirescu-Pereira, J. D., Wong, R. Y., Hartmann, B., and Yang, Q. (2023). Why johnny can’t prompt: How non-ai experts try (and fail) to design LLM prompts. In Schmidt, A., Väänänen, K., Goyal, T., Kristensson, P. O., Peters, A., Mueller, S., Williamson, J. R., and Wilson, M. L., editors, Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI 2023, Hamburg, Germany, April 23-28, 2023, pages 437:1–437:21. ACM.
Publicado
25/09/2023
MOREIRA, Johny; DA SILVA, Altigran; BARBOSA, Luciano. Prompting and Fine-tuning Pre-trained Generative Language Models. In: TUTORIAIS - SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 38. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 194-197. DOI: https://doi.org/10.5753/sbbd_estendido.2023.25636.