Data Insights on Gender Representation: Analyzing the Book and Music Industries

Resumo


The entertainment industry has been historically dominated by men, which motivates growing recognition and advocacy for improved gender diversity and equality. We present a study on gender representation in the book and music industries by analyzing awarded authors and hit song artists. Through Data Science, we uncover patterns and trends that beg for a more balanced and diverse portrayal of gender in creative expressions and offer insights to foster inclusivity, diversity, and equitable opportunities in such a domain.
Palavras-chave: Data Insights, Gender Representation, Book and Music Industries

Referências

Betti, L. et al. (2023). Large scale analysis of gender bias and sexism in song lyrics. EPJ Data Science, 12(1):10.

Brannon Donoghue, C. (2020). Hollywood and gender equity debates in the metoo time’s up era. Women in the International Film Industry: Policy, Practice and Power, pages 235–252.

Bucur, D. (2019). Gender homophily in online book networks. Inf. Sci., 481:229–243.

Ekstrand, M. D. and Kluver, D. (2021). Exploring author gender in book rating and recommendation. User Model. User Adapt. Interact., 31(3):377–420.

Epps-Darling, A. et al. (2020). Artist gender representation in music streaming. In ISMIR, pages 248–254.

Heritage, F. (2020). Applying corpus linguistics to videogame data: Exploring the representation of gender in videogames at a lexical level. Game Stud., 20(3).

Istead, L. et al. (2022). Evaluating gender bias in film dialogue. In NLDB, volume 13286 of Lecture Notes in Computer Science, pages 403–410. Springer.

Kagan, D. et al. (2020). Using data science to understand the film industry’s gender gap. Palgrave Communications, 6(1):92.

Mangaravite, V. et al. (2022). Dedupegov: Uma plataforma para integração de grandes volumes de dados de pessoas físicas e jurídicas em âmbito governamental. In SBBD, pages 90–102. SBC.

Morais, J. P. M. and Merschmann, L. H. C. (2021). Uma abordagem híbrida para predição de gênero a partir de textos em português. In SBBD, pages 49–60. SBC.

Mukherjee, S. and Bala, P. K. (2017). Gender classification of microblog text based on authorial style. Inf. Syst. E Bus. Manag., 15(1):117–138.

Oliveira, G. P. et al. (2020). Detecting collaboration profiles in success-based music genre networks. In ISMIR, Montreal, Canada.

Salles, I. and Pappa, G. (2021). Viés de gênero em biografias da wikipédia em português. In BraSNAM, pages 211–216, Porto Alegre, RS, Brasil. SBC.

Silva, M. O. et al. (2021). Exploring brazilian cultural identity through reading preferences. In BraSNAM, pages 115–126, Porto Alegre, RS, Brasil. SBC.

Silva, M. O., Oliveira, G. P., and Moro, M. M. (2024). Premiação de Mulheres na Literatura e na Música: Análise de Dados da Billboard e do Goodreads. In Wolff, C. S. and Schmitt, E., editors, A internet como campo de disputas de gênero, pages 185–197. Cultura e Barbárie, Florianópolis.

Smith, S. L. et al. (2020). Inclusion in the recording studio? RATIO, 25(16.8).

Szasz, T. et al. (2022). Measuring representation of race, gender, and age in children’s books: Face detection and feature classification in illustrated images. In WACV, pages 3371–3380. IEEE.

Waldfogel, J. (2023). The welfare effect of gender-inclusive intellectual property creation: Evidence from books. Technical report, National Bureau of Economic Research.

Watson, J. E. (2020). Programming inequality: Gender representation on canadian country radio (2005-2019). In ISMIR, pages 392–399.
Publicado
14/10/2024
SILVA, Mariana O.; OLIVEIRA, Gabriel P.; MORO, Mirella M.. Data Insights on Gender Representation: Analyzing the Book and Music Industries. In: DATA SCIENCE FOR SOCIAL GOOD BRAZILIAN WORKSHOP (DS4SG) - SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 39. , 2024, Florianópolis/SC. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 338-347. DOI: https://doi.org/10.5753/sbbd_estendido.2024.243743.