LLM4Time: Uma Ferramenta Interativa para Previsão de Séries Temporais com Modelos Largos de Linguagem
Resumo
Apresentamos o LLM4Time, uma ferramenta interativa para previsão de séries temporais com Large Language Models (LLMs). A aplicação permite o upload de arquivos CSV, realizando automaticamente a correção de valores duplicados, preenchimento de timestamps ausentes e inicialização da coluna alvo. O sistema oferece estratégias pré-definidas de engenharia de prompts, como Zero-Shot, Few-Shot, Chain-of-Thought (CoT) e CoT+Few-Shot (CoT+FS), além da possibilidade de conexão local com modelos via LM Studio, Ollama e a biblioteca da OpenAI. Também está disponível um painel de histórico das previsões realizadas, com filtragem por estratégia utilizada. A demo tem como foco facilitar a experimentação e análise de previsões com LLMs em dados temporais reais.
Palavras-chave:
Large Language Models, Time Series Forecasting, Prompt Engineering
Referências
Bastos, Z., Freitas, J. D., Franco, J. W., and Caminha, C. (2025). Prompt-driven time series forecasting with large language models. In Proceedings of the 27th International Conference on Enterprise Information Systems - Volume 1: ICEIS, pages 309–316. INSTICC, SciTePress.
da Conceição, J. S., dos Santos, J. L., and Cavalcante, R. (2020). Ferramenta para análise de séries temporais. In Anais da XX Escola Regional de Computação Bahia, Alagoas e Sergipe, pages 272–281, Porto Alegre, RS, Brasil. SBC.
Freitas, J. D., Ponte, C., Bomfim, R., and Caminha, C. (2023). The impact of window size on univariate time series forecasting using machine learning. In Symposium on Knowledge Discovery, Mining and Learning (KDMiLe), pages 65–72. SBC.
Garza, A. and Mergenthaler-Canseco, M. (2023). Timegpt-1.
Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. (2023). Large language models are zero-shot time series forecasters. Advances in Neural Information Processing Systems, 36:19622–19635.
Gu, Q. (2023). Llm-based code generation method for golang compiler testing. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 2201–2203.
Herzen, J., Lässig, F., Piazzetta, S. G., Neuer, T., Tafti, L., Raille, G., Van Pottelbergh, T., Pasieka, M., Skrodzki, A., Huguenin, N., et al. (2022). Darts: User-friendly modern machine learning for time series. Journal of Machine Learning Research, 23(124):1–6.
Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X., Chen, P.-Y., Liang, Y., Li, Y.-F., Pan, S., et al. (2023). Time-llm: Time series forecasting by reprogramming large language models. arXiv preprint arXiv:2310.01728.
Mondal, P., Shit, L., and Goswami, S. (2014). Study of effectiveness of time series modeling (arima) in forecasting stock prices. International Journal of Computer Science, Engineering and Applications, 4(2):13.
Wang, W., Chen, Z., Chen, X., Wu, J., Zhu, X., Zeng, G., Luo, P., Lu, T., Zhou, J., Qiao, Y., et al. (2024). Visionllm: Large language model is also an open-ended decoder for vision-centric tasks. Advances in Neural Information Processing Systems, 36.
Xue, H. and Salim, F. D. (2023). Promptcast: A new prompt-based learning paradigm for time series forecasting. IEEE Transactions on Knowledge and Data Engineering, 36(11):6851–6864.
da Conceição, J. S., dos Santos, J. L., and Cavalcante, R. (2020). Ferramenta para análise de séries temporais. In Anais da XX Escola Regional de Computação Bahia, Alagoas e Sergipe, pages 272–281, Porto Alegre, RS, Brasil. SBC.
Freitas, J. D., Ponte, C., Bomfim, R., and Caminha, C. (2023). The impact of window size on univariate time series forecasting using machine learning. In Symposium on Knowledge Discovery, Mining and Learning (KDMiLe), pages 65–72. SBC.
Garza, A. and Mergenthaler-Canseco, M. (2023). Timegpt-1.
Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. (2023). Large language models are zero-shot time series forecasters. Advances in Neural Information Processing Systems, 36:19622–19635.
Gu, Q. (2023). Llm-based code generation method for golang compiler testing. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 2201–2203.
Herzen, J., Lässig, F., Piazzetta, S. G., Neuer, T., Tafti, L., Raille, G., Van Pottelbergh, T., Pasieka, M., Skrodzki, A., Huguenin, N., et al. (2022). Darts: User-friendly modern machine learning for time series. Journal of Machine Learning Research, 23(124):1–6.
Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X., Chen, P.-Y., Liang, Y., Li, Y.-F., Pan, S., et al. (2023). Time-llm: Time series forecasting by reprogramming large language models. arXiv preprint arXiv:2310.01728.
Mondal, P., Shit, L., and Goswami, S. (2014). Study of effectiveness of time series modeling (arima) in forecasting stock prices. International Journal of Computer Science, Engineering and Applications, 4(2):13.
Wang, W., Chen, Z., Chen, X., Wu, J., Zhu, X., Zeng, G., Luo, P., Lu, T., Zhou, J., Qiao, Y., et al. (2024). Visionllm: Large language model is also an open-ended decoder for vision-centric tasks. Advances in Neural Information Processing Systems, 36.
Xue, H. and Salim, F. D. (2023). Promptcast: A new prompt-based learning paradigm for time series forecasting. IEEE Transactions on Knowledge and Data Engineering, 36(11):6851–6864.
Publicado
29/09/2025
Como Citar
BASTOS, Zairo; CAMINHA, Carlos; FRANCO, Wellington.
LLM4Time: Uma Ferramenta Interativa para Previsão de Séries Temporais com Modelos Largos de Linguagem. In: DEMONSTRAÇÕES E APLICAÇÕES - SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 40. , 2025, Fortaleza/CE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 100-105.
DOI: https://doi.org/10.5753/sbbd_estendido.2025.247668.
