Estimating Vulnerability to Extreme Events in Urban Areas: From Microdata to City-Wide Indicators
Resumo
During extreme event crises, such as floods, it is crucial to have accurate information about the most vulnerable populations. This study proposes a cost-effective methodology for estimating flood vulnerability by integrating microdata from household-level social records with macrodata derived from demographic and socioeconomic indicators. This approach allows for constructing a regional vulnerability index, which enables identifying high-risk areas even without complete microdata coverage. The method overcomes the challenge of limited data availability by leveraging existing public data sources and a regression model. The results of a case study in Curitiba, Brazil, show the potential to support the prioritization of regions for emergency response and to guide the development of public policies and mitigation strategies based on social and demographic criteria. This replicable methodology can be adapted to other cities facing budget constraints as a practical tool for mapping vulnerabilities and enhancing risk management.
Palavras-chave:
Disaster assistance, Smart city services, Support for people with disabilities
Referências
Augustin, A. (2024). Núcleo Porto Alegre analisa os impactos das enchentes na população pobre e negra do Rio Grande do Sul. Observatório das Metrópoles.
Chi, G., Fang, H., Chatterjee, S., and Blumenstock, J. E. (2022). Microestimates of wealth for all low- and middle-income countries. Proceedings of the National Academy of Sciences (PNAS), 119(3):e2113658119.
COHAPAR (2024). [link].
de Brito, M. M., Evers, M., and Höllermann, B. (2017). Prioritization of flood vulnerability, coping capacity and exposure indicators through the delphi technique: A case study in Taquari-Antas basin, Brazil. International Journal of Disaster Risk Reduction, 24:119–128.
Debortoli, N. S., Camarinha, P. I. M., Marengo, J. A., and Rodrigues, R. R. (2017). An index of Brazil’s vulnerability to expected increases in natural flash flooding and land-slide disasters in the context of climate change. Natural Hazards, 86:557–582.
Facebook (2024). Data for good: Visualizations. [link].
Fernandez, H. G. and Splendore, P. R. (2021). Sistema de identificação automática de riscos hidrometeorológicos com retroalimentação e reestruturação autônoma da infraestrutura de comunicação. Bachelor’s thesis, UTFPR.
IBGE (2021). Tipologia intraurbana: Espaços de diferenciais socioeconômicos nas concentrações urbanas do Brasil. [link].
Ibre, P. (2024). Informações econômicas. [link].
Mendonça, F. and Buffon, E. A. M. (2016). Resiliência socioambiental-espacial urbana à inundações: possibilidades e limites no bairro Cajuru em Curitiba (PR). Início / Arquivos, 12(19).
Rasch, R. J. (2016). Assessing urban vulnerability to flood hazard in Brazilian municipalities. Environment and Urbanization, 28(1):1–16.
Rehman, A., Akhtar, N., and Alhazmi, O. H. (2021). Formal modeling, proving, and model checking of a flood warning, monitoring, and rescue system-of-systems. Scientific Programming, 2021.
Rodrigues, G. T. (2023). Modelo de previsão de inundações urbanas: uma abordagem baseada em dados da bacia hidrográfica Ribeirão dos Padilhas, Curitiba (PR). Master’s thesis, PUC-PR.
Scalenghe, R. and Marsan, F. A. (2009). The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90(1-2):1–10.
Chi, G., Fang, H., Chatterjee, S., and Blumenstock, J. E. (2022). Microestimates of wealth for all low- and middle-income countries. Proceedings of the National Academy of Sciences (PNAS), 119(3):e2113658119.
COHAPAR (2024). [link].
de Brito, M. M., Evers, M., and Höllermann, B. (2017). Prioritization of flood vulnerability, coping capacity and exposure indicators through the delphi technique: A case study in Taquari-Antas basin, Brazil. International Journal of Disaster Risk Reduction, 24:119–128.
Debortoli, N. S., Camarinha, P. I. M., Marengo, J. A., and Rodrigues, R. R. (2017). An index of Brazil’s vulnerability to expected increases in natural flash flooding and land-slide disasters in the context of climate change. Natural Hazards, 86:557–582.
Facebook (2024). Data for good: Visualizations. [link].
Fernandez, H. G. and Splendore, P. R. (2021). Sistema de identificação automática de riscos hidrometeorológicos com retroalimentação e reestruturação autônoma da infraestrutura de comunicação. Bachelor’s thesis, UTFPR.
IBGE (2021). Tipologia intraurbana: Espaços de diferenciais socioeconômicos nas concentrações urbanas do Brasil. [link].
Ibre, P. (2024). Informações econômicas. [link].
Mendonça, F. and Buffon, E. A. M. (2016). Resiliência socioambiental-espacial urbana à inundações: possibilidades e limites no bairro Cajuru em Curitiba (PR). Início / Arquivos, 12(19).
Rasch, R. J. (2016). Assessing urban vulnerability to flood hazard in Brazilian municipalities. Environment and Urbanization, 28(1):1–16.
Rehman, A., Akhtar, N., and Alhazmi, O. H. (2021). Formal modeling, proving, and model checking of a flood warning, monitoring, and rescue system-of-systems. Scientific Programming, 2021.
Rodrigues, G. T. (2023). Modelo de previsão de inundações urbanas: uma abordagem baseada em dados da bacia hidrográfica Ribeirão dos Padilhas, Curitiba (PR). Master’s thesis, PUC-PR.
Scalenghe, R. and Marsan, F. A. (2009). The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90(1-2):1–10.
Publicado
29/09/2025
Como Citar
REOLON, Eduardo A.; LÜDERS, Ricardo; GOMES-JR, Luiz.
Estimating Vulnerability to Extreme Events in Urban Areas: From Microdata to City-Wide Indicators. In: DATA SCIENCE FOR SOCIAL GOOD BRAZILIAN WORKSHOP (DS4SG) - SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 40. , 2025, Fortaleza/CE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 262-271.
DOI: https://doi.org/10.5753/sbbd_estendido.2025.247892.
