UrbanReleaf: Enhancing Sustainable Urban Transformation with a Data-Driven Solution for Smart Depaving

  • Rafaela Morandi Santos Instituto Tecnológico de Aeronáutica
  • Lucas Sarmento Instituto Tecnológico de Aeronáutica
  • Mirela T. Cazzolato Universidade de São Paulo https://orcid.org/0000-0002-4364-010X
  • Harlei Miguel de Arruda Leite Instituto Tecnológico de Aeronáutica

Resumo


How does the proliferation of impervious surfaces affect the quality of life? Impermeabilization due to paving contributes to urban issues, such as increased temperatures, which form the so-called heat islands. It can also cause more intense and frequent floods, diminished biodiversity, and deterioration of air quality. In this context, depaving is a practical solution for increasing urban resilience. Given a large urban region covered by impervious surfaces, how can we select the best points for intervention? We propose the UrbanReleaf method to map excessively paved urban areas and simulate the environmental impact of implementing green infrastructure. UrbanReleaf identifies critical zones for nature-based interventions such as depaving and forecasts environmental outcomes, including surface temperature, soil moisture, and vegetation indices. The method achieves this by leveraging geospatial satellite imagery and machine learning regressors to analyze vegetation indices, land surface temperatures, and moisture content. Experimental results show that UrbanReleaf can support urban planners and policymakers with data-driven clues that can help mitigate problems caused by impermeabilized areas.

Palavras-chave: Depaving, Satellite Imagery, Geospatial Analysis

Referências

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer google schola, 2:1122–1128. ISBN: 0387310738.

Bowler, D. E., Buyung-Ali, L., Knight, T. M., and Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3):147–155. DOI: 10.1016/j.landurbplan.2010.05.006.

Chan, F., Griffiths, J., Higgitt, D., Xu, S., Zhu, F., Tang, Y.-T., Xu, Y., and Thorne, C. (2018). “sponge city” in china—a breakthrough of planning and flood risk management in the urban context. Land Use Policy, In Press. DOI: 10.1016/j.landusepol.2018.03.005.

Depave (2025). Depave: Urban re-greening and community revitalization. [link]. Accessed: 2025-07-06.

Gill, S., Handley, J., Ennos, R., and Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33:115–133. DOI: 10.2148/benv.33.1.115.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques, 3rd edition. Morgan Kaufmann. ISBN: 978-0123814791.

Huber, M., Kumar, V., Steele-Dunne, S. C., and Rommen, B. (2023). Sentinel-1 insar coherence as an indicator of monitor farming activities. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, Pasadena, CA, USA, July 16-21, 2023, pages 429–432. DOI: 10.1109/IGARSS52108.2023.10281522.

Lee, J. (2025). Estimating near-surface air temperature from satellite-derived land surface temperature using temporal deep learning: A comparative analysis. IEEE Access, 13:28935–28945. DOI: 10.1109/ACCESS.2025.3539581.

Lima, L. B., Franca Rocha, W. J., Souza, D. T., Lobao, J. S., de Santana, M. M., Cambui, E. C., and Vasconcelos, R. N. (2025). Urban quality: A remote-sensing-perspective review. Urban Science, 9(2):31. DOI: 10.3390/urbansci9020031.

Meerow, S. (2017). Spatial planning for multifunctional green infrastructure: Growing resilience in detroit. Landscape and Urban Planning, 159:62–75. DOI: 10.1016/j.landurbplan.2016.10.005.

Nguyen, K. and Park, C. J. (2025). On calibration of prompt learning using temperature scaling. IEEE Access, 13:31171–31182. DOI: 10.1109/ACCESS.2025.3538617.

Pimenow, S., Pimenowa, O., Prus, P., and Niklas, A. (2025). The impact of artificial intelligence on the sustainability of regional ecosystems: Current challenges and future prospects. Sustainability, 17(11):4795. DOI: 10.3390/su17114795.

Sentinel Hub (2025). Sentinel hub api documentation. [link]. Accessed: 2025-07-06.

Stamou, A. and Manika, S. (2013). Estimation of land surface temperature and urban patterns relationship for urban heat island studies.

Vasconcelos, F. F., Ramos, V. T., and Coutinho, F. J. (2023). Os desafios e soluções para a implementação de big data analytics em cidades inteligentes. In Simpósio Brasileiro de Banco de Dados (SBBD), pages 50–56. SBC. DOI: 10.5753/sbbd_estendido.2023.233368.

Vedrí, J., Niclòs, R., Pérez-Planells, L., Valor, E., Luna, Y., and Estrela, M. J. (2025). Empirical methods to determine surface air temperature from satellite-retrieved data. Int. J. Appl. Earth Obs. Geoinformation, 136:104380. DOI: 10.1016/j.jag.2025.104380.

Wen, Z., Zhuo, L., Gao, M., and Han, D. (2025). How can we improve data integration to enhance urban air temperature estimations? Int. J. Appl. Earth Obs. Geoinformation, 140:104599. DOI: 10.1016/j.jag.2025.104599.

Zhang, B., Xie, G., Zhang, C., and Zhang, J. (2012). The economic benefits of rainwater-runoff reduction by urban green spaces: A case study in beijing, china. Journal of environmental management, 100:65–71. DOI: 10.1016/j.jenvman.2012.01.015.
Publicado
29/09/2025
MORANDI SANTOS, Rafaela; SARMENTO, Lucas; CAZZOLATO, Mirela T.; DE ARRUDA LEITE, Harlei Miguel. UrbanReleaf: Enhancing Sustainable Urban Transformation with a Data-Driven Solution for Smart Depaving. In: DATA SCIENCE FOR SOCIAL GOOD BRAZILIAN WORKSHOP (DS4SG) - SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 40. , 2025, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 363-370. DOI: https://doi.org/10.5753/sbbd_estendido.2025.248229.