Termografia como Ferramenta de Avaliação Durante o Tratamento Neoadjuvante para Câncer de Mama

  • Adriel dos Santos Araújo UFF / Universidade Rey Juan Carlos
  • Milena H. S. Issa UFF
  • Ángel Sánchez Universidade Rey Juan Carlos
  • Débora C. Muchaluat-Saade UFF
  • Aura Conci UFF

Resumo


A termografia é uma alternativa para a detecção de anomalias que afetam o padrão térmico das mamas. Embora amplamente estuda para triagem ou diagnóstico, poucos estudos a investigam para acompanhar a evolução do tratamento. Neste artigo, propõe-se uma metodologia que a use no tratamento neoadjuvante, identificando as regiões mais quentes por meio de um algoritmo de aprendizado não supervisionado k-means e construindo séries temporais baseadas em medidas estatísticas e homogeneidade. Os resultados acompanham a evolução do tratamento corretamente em pelo menos 79% dos casos com base nas medidas estatísticas e 95% dos casos quando essas são combinadas com as medidas de homogeneidade na avaliação do paciente.

Referências

Anbar, M. (1998). Clinical thermal imaging today. IEEE Engineering in Medicine and Biology Magazine, 17(4):25–33.

Araujo, A. S., Issa, M. H. S., Medeiros, P. R. T., Sánchez, , Muchaluat-Saade, D. C., and Conci, A. (2021). Monitoring breast cancer neoadjuvant treatment using thermographic time series. In 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), pages 247–252.

Araujo, A. S., Issa, M. H. S., Sánchez, , Muchaluat-Saade, D. C., and Conci, A. (2022). Using thermography for breast cancer neoadjuvant treatment. In 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP), volume CFP2255E-ART, pages 1–4.

Bahramian, F. and Mojra, A. (2020). Thyroid cancer estimation using infrared thermography data. Infrared Physics Technology, 104:103–126.

Borchartt, T. B., Conci, A., Lima, R. C., Resmini, R., and Sanchez, A. (2013). Breast thermography from an image processing viewpoint: A survey. Signal processing, 93(10):2785–2803.

Ekici, S. and Jawzal, H. (2020). Breast cancer diagnosis using thermography and convolutional neural networks. Medical Hypotheses, 137:109542.

Etehadtavakol, M. and Ng, E. Y. (2017). Potential of thermography in pain diagnosing and treatment monitoring. In Application of infrared to biomedical sciences, pages 19–32. Springer.

Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2022). Global cancer observatory: cancer today. International Agency for Research on Cancer. https://gco.iarc.fr/today, accessed 2022-08-20.

Hoffer, O. A., Ben-David, M. A., Katz, E., Sholomov, M., Kelson, I., and Gannot, I. (2018). A portable thermal imaging device as a feedback system for breast cancer treatment. In Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVIII, volume 10488. International Society for Optics and Photonics.

Hsu, H. and Lachenbruch, P. A. (2014). Paired t test. Wiley StatsRef: statistics reference online.

Kashyap, U., Sarkar, S., and Saha, S. K. (2020). Study of hot stress dynamic ir thermography for detecting surface cancerous tissue. Journal of Medical Engineering & Technology, 44(6):284–298.

Kennedy, D. A., Lee, T., and Seely, D. (2009). A comparative review of thermography as a breast cancer screening technique. Integrative cancer therapies, 8(1):9–16.

Khan, A. A. and Arora, A. S. (2021). Thermography as an economical alternative modality to mammography for early detection of breast cancer. Journal of Healthcare Engineering, 2021:8 pages.

Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations. In In 5-th Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297.

Moran, M. B., Conci, A., González, J. R., Araújo, A. S., Fiirst, W., Damião, C. P., Lima, G. A., and da Cruz Filho, R. A. (2018). Identification of thyroid nodules in infrared images by convolutional neural networks. In 2018 International joint conference on neural networks (IJCNN), pages 1–7. IEEE.

Polidori, G., Renard, Y., Lorimier, S., Pron, H., Derruau, S., and Taiar, R. (2017). Medical infrared thermography assistance in the surgical treatment of axillary hidradenitis suppurativa: A case report. International journal of surgery case reports, 34:56–59.

Resmini, R., Silva, L., Araujo, A. S., Medeiros, P., Muchaluat-Saade, D., and Conci, A. (2021). Combining genetic algorithms and svm for breast cancer diagnosis using infrared thermography. Sensors, 21(14):4802.

Rosenberg, A. and Hirschberg, J. (2007). V-measure: A conditional entropy-based external cluster evaluation measure. In Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 410–420.

Santos, L. C., C. F. Lima, R., Paiva, A. C., Conci, A., and Espindola, N. A. (2023). A computing platform to analyze breast abnormalities using infrared images. Medical and Biological Engineering and Computing, 61:305–315.

Scikit-Learn (2022). Clustering Metrics. [link], accessed 2022-08-20.

Singh, D., Singh, A. K., and Tiwari, S. (2021). Breast thermography as an adjunct tool to monitor the chemotherapy response in a triple negative birads v cancer patient: a case study. IEEE Transactions on Medical Imaging, 41(3):737–745.

Ulmer, H. U., Brinkmann, M., and Frischbier, H.-J. (1990). Thermography in the follow-up of breast cancer patients after breast-conserving treatment by tumorectomy and radiation therapy. Cancer, 65(12):2676–2680.

WHO (2022). World Health Organization. [link], accessed 2022-08-20.

Wu, Q., Li, J., Sun, S., Yao, X., Zhu, S., Wu, J., Liu, Q., Ding, X., Shi, M., Li, K., et al. (2017). Thermal tomography for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Oncotarget, 8(40):68974.
Publicado
27/06/2023
ARAÚJO, Adriel dos Santos; ISSA, Milena H. S.; SÁNCHEZ, Ángel; MUCHALUAT-SAADE, Débora C.; CONCI, Aura. Termografia como Ferramenta de Avaliação Durante o Tratamento Neoadjuvante para Câncer de Mama. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 23. , 2023, São Paulo/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 280-291. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2023.229813.