Analyzing the COVID-19 parameters for large Brazilian municipalities using a model with fuzzy transitions between epidemic periods

  • Hélder Seixas Lima UFMG / IFNMG
  • Frederico Gadelha Guimarães UFMG

Resumo


This study investigates the dynamics of the COVID-19 pandemic across the 41 largest Brazilian municipalities from 2020 to 2022. We used a mathematical model with fuzzy transitions between epidemic periods to estimate epidemiological parameters such as basic reproduction number (R0) and the Infection Fatality Rate (IFR). We provide insights into the trajectory of the pandemic by correlating these parameters with data on social isolation, vaccination efforts, and the emergence of new variants. Our findings highlight the role of social isolation in reducing R0 in 2020 and the impact of mass vaccination on lowering the IFR in 2022. However, the highest mortality rates recorded in 2021 underscore the complex interplay of various factors observed in that moment.

Referências

Almeida, G., Vilches, T., Ferreira, C., and Fortaleza, C. (2021). Addressing the COVID-19 transmission in inner Brazil by a mathematical model. Scientific Reports, 11(1):10760.

Bastos, S. B. and Cajueiro, D. O. (2020). Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil. Scientific Reports, 10(1):19457.

Cori, A., Ferguson, N. M., Fraser, C., and Cauchemez, S. (2013). A new framework and software to estimate time-varying reproduction numbers during epidemics. American Journal of Epidemiology, 178(9):1505–1512.

Cota, W. (2021). Vaccination data. Database: GitHub [Internet]. Available from: [link]. Accessed: 2024 February 27.

DATASUS (2020). Painel de casos de doença pelo coronavírus 2019 (COVID-19) no Brasil pelo Ministério da Saúde. Database: Gov.BR [Internet]. Available from: [link]. Accessed: 2023 November 23.

DATASUS (2022a). Banco de Dados de Síndrome Respiratória Aguda Grave - incluindo dados da COVID-19. Database: Gov.BR [Internet]. Available from: [link]. Accessed: 2023 November 23.

DATASUS (2022b). Sistema de Informação sobre Mortalidade – SIM. Database: Gov.BR [Internet]. Available from: [link]. Accessed: 2023 January 23.

Ferrante, L., Duczmal, L. H., Capanema, E., Steinmetz, W. A. C., Almeida, A. C. L., Leão, J., Vassao, R. C., Fearnside, P. M., and Tupinambás, U. (2022). Dynamics of COVID-19 in Amazonia: a history of government denialism and the risk of a third wave. Preventive medicine reports, 26:101752.

Fiocruz (2020). Fiocruz’s genomics network. Database: Fiocruz [Internet]. Available from: [link]. Accessed: 02/20/2024.

Google (2020). Google COVID-19 community mobility reports. Database: Google [Internet]. Available from: [link]. Accessed: 2024 February 27.

Instituto Brasileiro de Geografia e Estatística (2022). Censo 2022. Database: Gov.BR [Internet]. Available from: [link]. Accessed: 2023 March 29.

Lima, H. S., Tupinambás, U., and Guimarães, F. G. (2024). Estimating time-varying epidemiological parameters and underreporting of Covid-19 cases in Brazil using a mathematical model with fuzzy transitions between epidemic periods. PLoS ONE.

Melo, G. C. d., Duprat, I. P., Araújo, K. C. G. M. d., Fischer, F. M., and Araújo Neto, R. A. d. (2020). Prediction of cumulative rate of COVID-19 deaths in Brazil: a modeling study. Revista Brasileira de Epidemiologia, 23.

Nouvellet, P., Bhatia, S., Cori, A., Ainslie, K. E., Baguelin, M., Bhatt, S., Boonyasiri, A., Brazeau, N. F., Cattarino, L., Cooper, L. V., et al. (2021). Reduction in mobility and COVID-19 transmission. Nature communications, 12(1):1090.

Oliveira, J. F., Jorge, D. C., Veiga, R. V., Rodrigues, M. S., Torquato, M. F., da Silva, N. B., Fiaccone, R. L., Cardim, L. L., Pereira, F. A., de Castro, C. P., et al. (2021). Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil. Nature communications, 12(1):333.

Pulliam, J. R., van Schalkwyk, C., Govender, N., von Gottberg, A., Cohen, C., Groome, M. J., Dushoff, J., Mlisana, K., and Moultrie, H. (2022). Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science, 376(6593):eabn4947.

Shumway, R. H., Stoffer, D. S., and Stoffer, D. S. (2000). Time series analysis and its applications, volume 3. Springer.

Storn, R. and Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341.

Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., Cuomo-Dannenburg, G., Thompson, H., Walker, P. G., Fu, H., et al. (2020). Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet Infectious Diseases, 20(6):669–677.

World Health Organization (2023). Covid-19 vaccine tracker and landscape. Available from: [link]. Accessed: 2024 February 27.
Publicado
25/06/2024
LIMA, Hélder Seixas; GUIMARÃES, Frederico Gadelha. Analyzing the COVID-19 parameters for large Brazilian municipalities using a model with fuzzy transitions between epidemic periods. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 24. , 2024, Goiânia/GO. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 70-81. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2024.1874.

Artigos mais lidos do(s) mesmo(s) autor(es)