A-Track: An Ontological Approach to Assisting Anxiety Management

  • Gustavo Lazarotto Schroeder Unsinos
  • Leonardo dos Santos Paula Unsinos
  • Rosemary Francisco Unsinos
  • Jorge Luis Victória Barbosa Unsinos

Resumo


Anxiety, a natural survival mechanism, becomes chronic under modern stressors, escalating into chronic disorders with multifaceted health impacts. While early detection is crucial, healthcare systems struggle with scalability. This study introduces the A-Track Ontology, a digital tool designed to model anxiety through personalized context histories. Validated through logical consistency, domain coverage, and utility assessments, the ontology synthesizes multimodal data into actionable insights for proactive intervention. Integrating ontological reasoning with real-world context awareness, this approach addresses clinical scalability gaps, enabling personalized, data-driven strategies for anxiety management.

Referências

Aguilar, J., Jerez, M., and Rodríguez, T. (2018). Cameonto: Context awareness meta ontology modeling. Applied Computing and Informatics, 14(2):202–213.

Antoniou, G. and Harmelen, F. v. (2009). Web Ontology Language: OWL, page 91–110. Springer Berlin Heidelberg.

APA (2019). Stress relief is within reach. [link]. Accessed: 2025-01-11.

APA (2022). Increased need for mental health care strains capacity. [link]. Accessed: 2025-01-13.

APS (2022). Anxiety disorders. [link]. Accessed: 2025-01-11.

Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46:109–132.

Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J.-P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Garcia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., Lambert, E., Leitzmann, M., Milton, K., Ortega, F. B., Ranasinghe, C., Stamatakis, E., Tiedemann, A., Troiano, R. P., van der Ploeg, H. P., Wari, V., and Willumsen, J. F. (2020). World health organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24):1451–1462.

Can, Y. S., Arnrich, B., and Ersoy, C. (2019). Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Journal of Biomedical Informatics, 92:103139.

Ceusters, W. and Smith, B. (2010). Foundations for a realist ontology of mental disease. Journal of Biomedical Semantics, 1(1):10.

Djuric, D., Gaševi, D., and Devedžic, V. (2005). Ontology modeling and MDA. The Journal of Object Technology, 4(1):109.

dos Santos Paula, L., Barbosa, J. L. V., and Dias, L. P. S. (2021). A model for assisting in the treatment of anxiety disorder. Universal Access in the Information Society, 21(2):533–543.

Goetz, C., Simon Bavaresco, R., Heckler, W. F., Lazarotto Schroeder, G., Kunst, R., and Barbosa, J. L. V. (2025). Ontokaire: an ontology-based reasoning for work-related stressors in industrial settings. JUCS - Journal of Universal Computer Science, 31(5):445–468.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-Computer Studies, 43(5–6):907–928.

Gruninger, M. (1995). Methodology for the design and evaluation of ontologies. In International Joint Conference on Artificial Intelligence.

Hadzic, M., Chen, M., and Dillon, T. S. (2008). Towards the mental health ontology. In Proceedings of the 2008 IEEE International Conference on Bioinformatics and Biomedicine, BIBM ’08, page 284–288, USA. IEEE Computer Society.

Helfer, G. A., da Costa, A. B., and Barbosa, J. L. V. (2025). Soilbr-onto: An ontology for soil fertility management and classification in brazil. Applied Ontology, page 15705838251315571.

Hirshkowitz, M., Whiton, K., Albert, S. M., Alessi, C., Bruni, O., DonCarlos, L., Hazen, N., Herman, J., Katz, E. S., Kheirandish-Gozal, L., Neubauer, D. N., O’Donnell, A. E., Ohayon, M., Peever, J., Rawding, R., Sachdeva, R. C., Setters, B., Vitiello, M. V., Ware, J. C., and Adams Hillard, P. J. (2015). National sleep foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health, 1(1):40–43.

Jain, S. K., Rani R, H. J., and Paikaray, D. (2024). Enhancing iot networking through predictive big data processing. In 2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA), page 1–6. IEEE.

Lord, P. (2010). Components of an ontology. [link]. Accessed: 2025-01-11.

Mathew, B. (2022). Effectiveness of psychological intervention package on anxiety and wellness level among patients with anxiety disorders. Journal of Family Medicine and Primary Care, 11(11):6704–6713.

Noy, N. F. and McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology.

O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., and Musen, M. (2005). Supporting rule system interoperability on the semantic web with SWRL. In The Semantic Web ISWC 2005, pages 974–986. Springer Berlin Heidelberg.

Paula, L. d. S., Pfeiffer Salomão Dias, L., Francisco, R., and Barbosa, J. L. V. (2022). Analysing iot data for anxiety and stress monitoring: A systematic mapping study and taxonomy. International Journal of Human–Computer Interaction, 40(5):1174–1194.

Pejovic, V., Mehrotra, A., and Musolesi, M. (2015). Anticipatory mobile digital health: Towards personalised proactive therapies and prevention strategies.

Rosmond, R., Dallman, M. F., and Björntorp, P. (1998). Stress-related cortisol secretion in men: Relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities1. The Journal of Clinical Endocrinology & Metabolism, 83(6):1853–1859.

Sapra, A., Bhandari, P., Sharma, S., Chanpura, T., and Lopp, L. (2020). Using generalized anxiety disorder-2 (GAD-2) and GAD-7 in a primary care setting. Cureus.

Sultson, H., Murd, C., Havik, M., and Konstabel, K. (2024). Negative affect instability predicts elevated depressive and generalized anxiety disorder symptoms even when negative affect intensity is controlled for: an ecological momentary assessment study. Frontiers in Psychology, 15.

Umar, Z., Tahir, Z., and Nizami, A. (2023). Impact of severe mental illnesses on health-related quality of life among patients attending the institute of psychiatry, rawalpindi from 2019 to 2021: A cross-sectional study. PLOS ONE, 18(8):e0289080.

Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., and Campbell, A. T. (2014). Studentlife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. In UbiComp 2014 - Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’14, pages 3–14, New York, NY, USA. ACM.

World Health Organization (2023). Anxiety disorders fact sheet. Accessed: 16-Feb-2025.

Xu, A., Darbandi, M., Javaheri, D., Navimipour, N. J., Yalcin, S., and Salameh, A. A. (2023). The management of iot-based organizational and industrial digitalization using machine learning methods. Sustainability, 15(7):5932.

Zhao, R., Xu, C., Shi, G., Li, C., Shao, S., Shangguan, F., and Cui, L. (2024). Connection of social anxiety to impaired pattern of cognitive control and underlying motivational deficiencies: Evidence from event-related potentials. Psychophysiology, 61(9).
Publicado
09/06/2025
SCHROEDER, Gustavo Lazarotto; PAULA, Leonardo dos Santos; FRANCISCO, Rosemary; BARBOSA, Jorge Luis Victória. A-Track: An Ontological Approach to Assisting Anxiety Management. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 25. , 2025, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 44-55. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2025.6928.