Critical analysis of the performance of the YOLO architecture in the detection of oral lesions from clinical images
Resumo
The objective of this work was to train a convolutional neural network for the detection of oral cavity lesions in heterogeneous clinical images, using YOLOv5, as well as the critical analysis of its effectiveness. The database had four categories of elementary oral lesions, without stipulating protocols for obtaining the images, such as distance, angle, and illumination. YOLO showed the best performance in detecting vesicular/blister lesions in both models analyzed: YOLOv5m mAP@50 was 86.8% and in the YOLOv5x model it was 80.7%, followed by papule/nodule in both tests. Images containing only one lesion showed better performance. We considered the quality of the detections obtained to be satisfactory in the majority of images despite using a small dataset for this evaluation.Referências
Aljuaid, A. and Anwar, M. (2022). Survey of supervised learning for medical image processing. SN Computer Science, 3(4):292.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. Journal of big Data, 8:1–74.
Figueroa, K. C., Song, B., Sunny, S., Li, S., Gurushanth, K., Mendonca, P., Mukhia, N., Patrick, S., Gurudath, S., Raghavan, S., et al. (2022). Interpretable deep learning approach for oral cancer classification using guided attention inference network. Journal of biomedical optics, 27(1):015001–015001.
Flügge, T., Gaudin, R., Sabatakakis, A., Tröltzsch, D., Heiland, M., van Nistelrooij, N., and Vinayahalingam, S. (2023). Detection of oral squamous cell carcinoma in clinical photographs using a vision transformer. Scientific Reports, 13(1):2296.
Fu, Q., Chen, Y., Li, Z., Jing, Q., Hu, C., Liu, H., Bao, J., Hong, Y., Shi, T., Li, K., et al. (2020). A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine, 27.
Gomes, R. F. T., Schmith, J., de Figueiredo, R. M., Freitas, S. A., Machado, G. N., Romanini, J., Almeida, J. D., Pereira, C. T., de Almeida Rodrigues, J., and Carrard, V. C. (2024). Convolutional neural network misclassification analysis in oral lesions: an error evaluation criterion by image characteristics. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 137(3):243–252.
Gomes, R. F. T., Schmith, J., Figueiredo, R. M. d., Freitas, S. A., Machado, G. N., Romanini, J., and Carrard, V. C. (2023a). Use of artificial intelligence in the classification of elementary oral lesions from clinical images. International Journal of Environmental Research and Public Health, 20(5):3894.
Gomes, R. F. T., Schuch, L. F., Martins, M. D., Honório, E. F., de Figueiredo, R. M., Schmith, J., Machado, G. N., and Carrard, V. C. (2023b). Use of deep neural networks in the detection and automated classification of lesions using clinical images in ophthalmology, dermatology, and oral medicine—a systematic review. Journal of digital imaging, 36(3):1060–1070.
Güneri, P. and Epstein, J. B. (2014). Late stage diagnosis of oral cancer: components and possible solutions. Oral oncology, 50(12):1131–1136.
Hassani, H., Silva, E. S., Unger, S., TajMazinani, M., and Mac Feely, S. (2020). Artificial intelligence (ai) or intelligence augmentation (ia): what is the future? Ai, 1(2):8.
Ilhan, B., Guneri, P., and Wilder-Smith, P. (2021). The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer. Oral oncology, 116:105254.
Jocher, G. et al. (2023). Yolov5 by ultralytics. 2020. [link].
Kelsch, C. R., Schmith, J., Gomes, R. F., Carrard, V. C., and de Figueiredo, R. M. (2023). Image processing methods for oral macules and spots segmentation. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), pages 256–267. SBC.
Lin, H., Chen, H., Weng, L., Shao, J., and Lin, J. (2021). Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. Journal of Biomedical Optics, 26(8):086007–086007.
Maccagnan, G. C., Schmith, J., Santos, M., and de Figueiredo, R. M. (2023). Toolbox for vessel x-ray angiography images simulation. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), pages 59–70. SBC.
Mortazavi, H., Baharvand, M., Dalaie, K., Faraji, M., Khalighi, H., and Behnaz, M. (2019). Oral lesion description: a mini review. International Journal of Medical Reviews, 6(3):81–87.
Nam, Y., Kim, H.-G., and Kho, H.-S. (2018). Differential diagnosis of jaw pain using informatics technology. Journal of Oral Rehabilitation, 45(8):581–588.
Rajendran, S., Lim, J. H., Yogalingam, K., Kallarakkal, T. G., Zain, R. B., Jayasinghe, R. D., Rimal, J., Kerr, A. R., Amtha, R., Patil, K., et al. (2023). Image collection and annotation platforms to establish a multi-source database of oral lesions. Oral Diseases, 29(5):2230–2238.
Song, B., Li, S., Sunny, S., Gurushanth, K., Mendonca, P., Mukhia, N., Patrick, S., Gurudath, S., Raghavan, S., Tsusennaro, I., et al. (2021). Classification of imbalanced oral cancer image data from high-risk population. Journal of biomedical optics, 26(10):105001–105001.
Tanriver, G., Soluk Tekkesin, M., and Ergen, O. (2021). Automated detection and classification of oral lesions using deep learning to detect oral potentially malignant disorders. Cancers, 13(11):2766.
Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., Jantana, P., and Vicharueang, S. (2022). Ai-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. Plos one, 17(8):e0273508.
Warin, K. and Suebnukarn, S. (2024). Deep learning in oral cancer-a systematic review. BMC Oral Health, 24(1):212.
Welikala, R. A., Remagnino, P., Lim, J. H., Chan, C. S., Rajendran, S., Kallarakkal, T. G., Zain, R. B., Jayasinghe, R. D., Rimal, J., Kerr, A. R., et al. (2020). Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. Ieee Access, 8:132677–132693.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. Journal of big Data, 8:1–74.
Figueroa, K. C., Song, B., Sunny, S., Li, S., Gurushanth, K., Mendonca, P., Mukhia, N., Patrick, S., Gurudath, S., Raghavan, S., et al. (2022). Interpretable deep learning approach for oral cancer classification using guided attention inference network. Journal of biomedical optics, 27(1):015001–015001.
Flügge, T., Gaudin, R., Sabatakakis, A., Tröltzsch, D., Heiland, M., van Nistelrooij, N., and Vinayahalingam, S. (2023). Detection of oral squamous cell carcinoma in clinical photographs using a vision transformer. Scientific Reports, 13(1):2296.
Fu, Q., Chen, Y., Li, Z., Jing, Q., Hu, C., Liu, H., Bao, J., Hong, Y., Shi, T., Li, K., et al. (2020). A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine, 27.
Gomes, R. F. T., Schmith, J., de Figueiredo, R. M., Freitas, S. A., Machado, G. N., Romanini, J., Almeida, J. D., Pereira, C. T., de Almeida Rodrigues, J., and Carrard, V. C. (2024). Convolutional neural network misclassification analysis in oral lesions: an error evaluation criterion by image characteristics. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 137(3):243–252.
Gomes, R. F. T., Schmith, J., Figueiredo, R. M. d., Freitas, S. A., Machado, G. N., Romanini, J., and Carrard, V. C. (2023a). Use of artificial intelligence in the classification of elementary oral lesions from clinical images. International Journal of Environmental Research and Public Health, 20(5):3894.
Gomes, R. F. T., Schuch, L. F., Martins, M. D., Honório, E. F., de Figueiredo, R. M., Schmith, J., Machado, G. N., and Carrard, V. C. (2023b). Use of deep neural networks in the detection and automated classification of lesions using clinical images in ophthalmology, dermatology, and oral medicine—a systematic review. Journal of digital imaging, 36(3):1060–1070.
Güneri, P. and Epstein, J. B. (2014). Late stage diagnosis of oral cancer: components and possible solutions. Oral oncology, 50(12):1131–1136.
Hassani, H., Silva, E. S., Unger, S., TajMazinani, M., and Mac Feely, S. (2020). Artificial intelligence (ai) or intelligence augmentation (ia): what is the future? Ai, 1(2):8.
Ilhan, B., Guneri, P., and Wilder-Smith, P. (2021). The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer. Oral oncology, 116:105254.
Jocher, G. et al. (2023). Yolov5 by ultralytics. 2020. [link].
Kelsch, C. R., Schmith, J., Gomes, R. F., Carrard, V. C., and de Figueiredo, R. M. (2023). Image processing methods for oral macules and spots segmentation. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), pages 256–267. SBC.
Lin, H., Chen, H., Weng, L., Shao, J., and Lin, J. (2021). Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. Journal of Biomedical Optics, 26(8):086007–086007.
Maccagnan, G. C., Schmith, J., Santos, M., and de Figueiredo, R. M. (2023). Toolbox for vessel x-ray angiography images simulation. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), pages 59–70. SBC.
Mortazavi, H., Baharvand, M., Dalaie, K., Faraji, M., Khalighi, H., and Behnaz, M. (2019). Oral lesion description: a mini review. International Journal of Medical Reviews, 6(3):81–87.
Nam, Y., Kim, H.-G., and Kho, H.-S. (2018). Differential diagnosis of jaw pain using informatics technology. Journal of Oral Rehabilitation, 45(8):581–588.
Rajendran, S., Lim, J. H., Yogalingam, K., Kallarakkal, T. G., Zain, R. B., Jayasinghe, R. D., Rimal, J., Kerr, A. R., Amtha, R., Patil, K., et al. (2023). Image collection and annotation platforms to establish a multi-source database of oral lesions. Oral Diseases, 29(5):2230–2238.
Song, B., Li, S., Sunny, S., Gurushanth, K., Mendonca, P., Mukhia, N., Patrick, S., Gurudath, S., Raghavan, S., Tsusennaro, I., et al. (2021). Classification of imbalanced oral cancer image data from high-risk population. Journal of biomedical optics, 26(10):105001–105001.
Tanriver, G., Soluk Tekkesin, M., and Ergen, O. (2021). Automated detection and classification of oral lesions using deep learning to detect oral potentially malignant disorders. Cancers, 13(11):2766.
Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., Jantana, P., and Vicharueang, S. (2022). Ai-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. Plos one, 17(8):e0273508.
Warin, K. and Suebnukarn, S. (2024). Deep learning in oral cancer-a systematic review. BMC Oral Health, 24(1):212.
Welikala, R. A., Remagnino, P., Lim, J. H., Chan, C. S., Rajendran, S., Kallarakkal, T. G., Zain, R. B., Jayasinghe, R. D., Rimal, J., Kerr, A. R., et al. (2020). Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. Ieee Access, 8:132677–132693.
Publicado
09/06/2025
Como Citar
RIBEIRO, Gustavo Goetz; SCHMITH, Jean; GOMES, Rita F. T.; MACHADO, Giovanna Nunes; CARRARD, Vinicius C.; FIGUEIREDO, Rodrigo Marques de.
Critical analysis of the performance of the YOLO architecture in the detection of oral lesions from clinical images. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 224-235.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2025.6999.