Classification of Coronary Calcifications using Deep Learning Approach: A Feasibility Study with the orCaScore Database

  • Jessica Cristina Santos do Nascimento UFMA
  • Italo Francyles Santos da Silva UFMA
  • Aristófanes Corrêa Silva UFMA
  • Anselmo Cardoso de Paiva UFMA


This document presents a deep learning method for the automatic detection and classification of calcified lesions in coronary arteries using Convolutional Neural Networks (CNN) based on the AlexNet architecture. The demonstration of this proposal uses orCaScore, a standardized and labeled database of low-dose radiation computed tomography (CT) images of the heart. The methodology division was designed starting with the region of interest (ROI) extraction for consecutively utilizing a patch-based approach. We tested this approach in 7,386 patches and achieved an accuracy of 67%, sensitivity of 100%, precision of 67% and specificity of 75%. Our technique aims to reinforce the detection and quantification of coronary calcified lesions, enabling accurate diagnosis and treatment of cardiovascular diseases.


Júnior, R. J. F. A., da Silva, I. F. S., Silva, A. C., and de Paiva, A. C. (2021). Detecçao de nódulos da tireoide em exames de termografia utilizando redes neurais convolucionais em cascata. In Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde, pages 269–280. SBC.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. volume 60, pages 84–90. AcM New York, NY, USA.

Litjens, G., Ciompi, F., Wolterink, J. M., de Vos, B. D., Leiner, T., Teuwen, J., and Išgum, I. (2019). State-of-the-art deep learning in cardiovascular image analysis. volume 12, pages 1549–1565. American College of Cardiology Foundation Washington, DC.

Santini, G., Latta, D. D., Martini, N., Valvano, G., Gori, A., Ripoli, A., Susini, C. L., Landini, L., and Chiappino, D. (2018). An automatic deep learning approach for coronary artery calcium segmentation. In EMBEC & NBC 2017: Joint Conference of the European Medical and Biological Engineering Conference (EMBEC) and the NordicBaltic Conference on Biomedical Engineering and Medical Physics (NBC), Tampere, Finland, June 2017, pages 374–377. Springer.

Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. volume 45, pages 427–437. Elsevier.

(WHO), W. H. O. et al. (2020). Global health estimates 2020: Deaths by cause, age, sex, by country and by region, 2000-2019: Who; 2020.

Wolterink, J. M., Leiner, T., De Vos, B. D., Coatrieux, J.-L., Kelm, B. M., Kondo, S., Salgado, R. A., Shahzad, R., Shu, H., Snoeren, M., et al. (2016). An evaluation of automatic coronary artery calcium scoring methods with cardiac ct using the orcascore framework. volume 43, pages 2361–2373. Wiley Online Library.
NASCIMENTO, Jessica Cristina Santos do; SILVA, Italo Francyles Santos da; SILVA, Aristófanes Corrêa; PAIVA, Anselmo Cardoso de. Classification of Coronary Calcifications using Deep Learning Approach: A Feasibility Study with the orCaScore Database. In: CONCURSO DE TRABALHOS DE INICIAÇÃO CIENTÍFICA - SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 23. , 2023, São Paulo/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 60-65. ISSN 2763-8987. DOI: