Hierarchical fog-cloud architecture to process priority-oriented health services with serverless computing

  • Gustavo André Setti Cassel UNISINOS
  • Rodrigo da Rosa Righi UNISINOS
  • Marta Rosecler Bez FEEVALE

Resumo


Este artigo apresenta SmartVSO - um modelo computacional de uma arquitetura hierárquica, escalável, fog-cloud, que processa sinais vitais com serviços de saúde implementados como funções serverless. Heurísticas favorecem sinais vitais de pessoas com problemas de saúde, a fim de obterem resultados com baixo tempo de resposta mesmo durante picos de uso. Consideramos um mecanismo recursivo de offloading de sinais vitais sinais entre fog nodes e cloud, a fim de distribuir o processamento baseado em semânticas da saúde. Experimento realizado com 80.000 sinais vitais indica que o modelo proposto processa 60% dos sinais vitais urgentes em até 5,3 segundos, enquanto 60% dos sinais vitais de pessoas saudáveis são consumidos em até 1 hora e 54 minutos.

Referências

AlZailaa, A., Chi, H. R., Radwan, A., and Aguiar, R. (2021). Low-latency task classification and scheduling in fog/cloud based critical e-health applications. In ICC 2021 - IEEE International Conference on Communications, pages 1–6.

Arora, U. and Singh, N. (2021). Iot application modules placement in heterogeneous fog–cloud infrastructure. International Journal of Information Technology, 13(5):1975–1982.

Bermbach, D., Maghsudi, S., Hasenburg, J., and Pfandzelter, T. (2020). Towards auctionbased function placement in serverless fog platforms. In 2020 IEEE International Conference on Fog Computing (ICFC), pages 25–31.

Bukhari, M. M., Ghazal, T. M., Abbas, S., Khan, M. A., Farooq, U., Wahbah, H., Ahmad, M., and Adnan, K. M. (2022). An intelligent proposed model for task offloading in fog-cloud collaboration using logistics regression. Computational Intelligence and Neuroscience, 2022:3606068.

Cheng, B., Fuerst, J., Solmaz, G., and Sanada, T. (2019). Fog function: Serverless fog computing for data intensive iot services. In 2019 IEEE International Conference on Services Computing (SCC), pages 28–35.

Cicconetti, C., Conti, M., and Passarella, A. (2021). A decentralized framework for serverless edge computing in the internet of things. IEEE Transactions on Network and Service Management, 18(2):2166–2180.

Dehury, C. K., Poojara, S. R., Domanal, S. G., and Srirama, S. N. (2021). Def-drel: Systematic deployment of serverless functions in fog and cloud environments using deep reinforcement learning. CoRR, abs/2110.15702.

George, G., Bakir, F., Wolski, R., and Krintz, C. (2020). Nanolambda: Implementing functions as a service at all resource scales for the internet of things. In 2020 IEEE/ACM Symposium on Edge Computing (SEC), pages 220–231.

Haghi Kashani, M., Madanipour, M., Nikravan, M., Asghari, P., and Mahdipour, E. (2021). A systematic review of iot in healthcare: Applications, techniques, and trends. Journal of Network and Computer Applications, 192:103164.

Hartmann, M., Hashmi, U. S., and Imran, A. (2022). Edge computing in smart health care systems: Review, challenges, and research directions. Transactions on Emerging Telecommunications Technologies, 33(3):e3710. e3710 ett.3710.

Pelle, I., Paolucci, F., Sonkoly, B., and Cugini, F. (2021). Latency-sensitive edge/cloud serverless dynamic deployment over telemetry-based packet-optical network. IEEE Journal on Selected Areas in Communications, 39(9):2849–2863.

Rausch, T., Rashed, A., and Dustdar, S. (2021). Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems, 114:259–271.

Rezazadeh, Z., Rezaei, M., and Nickray, M. (2019). Lamp: A hybrid fog-cloud latency-aware module placement algorithm for iot applications. In 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), pages 845–850.
Publicado
27/06/2023
CASSEL, Gustavo André Setti; RIGHI, Rodrigo da Rosa; BEZ, Marta Rosecler. Hierarchical fog-cloud architecture to process priority-oriented health services with serverless computing. In: PRÊMIO ARTUR ZIVIANI - CONCURSO DE TESES E DISSERTAÇÕES (MESTRADO) - SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 23. , 2023, São Paulo/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 108-113. ISSN 2763-8987. DOI: https://doi.org/10.5753/sbcas_estendido.2023.229452.