WEB system for classification of Visceral Leishmaniasis with automatic microscopic image collection
Abstract
This paper proposes a web application and an automated platform for the diagnosis of visceral leishmaniasis through microscopic images. Employing a deep learning approach, specifically the U-Net model, the system analyzes slide images to detect the Leishmania parasite, improving the diagnosis and treatment of the disease. The differential lies in the ability to automatically capture images, reducing the need for manual manipulation and speeding up the diagnostic process. The results highlight the model’s accuracy of 85.1% and sensitivity of 72.2% in identifying the parasites, demonstrating the application’s potential in clinical practice.
References
Flask microframework. [link]. Acesso em: 11 de maio de 2024.
(2023). Leishmaniose. Disponível em: [link]. Organização Mundial da Saúde. Acesso em 30 de Outubro de 2023.
Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., and den Boer, M. (2012). Leishmaniasis worldwide and global estimates of its incidence. PloS one, 7(5):e35671.
Castro, R. (2023). Aumento de casos de leishmaniose em cães acende alerta para doença em humanos. Disponível em: [link]. Agência Fiocruz de Notícias. Acesso em 30 de Outubro de 2023.
Ganesan, D. and Naveenkumar, N. (2023). Cloud based web-application for rapid and precise detection of tuberculosis using deep learning.
Gonçalves, C., Borges, A., Dias, V., Marques, J., Aguiar, B., Costa, C., and Silva, R. (2023). Detection of human visceral leishmaniasis parasites in microscopy images from bone marrow parasitological examination. Applied Sciences, 13(14):8076.
Silva, L. A., Romero, H. D., Nascentes, G. A. N., Costa, R. T., Rodrigues, V., and Prata, A. (2011). Antileishmania immunological tests for asymptomatic subjects living in a visceral leishmaniasis-endemic area in brazil. The American journal of tropical medicine and hygiene, 84(2):261.
Zare, M., Akbarialiabad, H., Parsaei, H., Asgari, Q., Alinejad, A., Bahreini, M. S., Hosseini, S. H., Ghofrani-Jahromi, M., Shahriarirad, R., Amirmoezzi, Y., et al. (2022). A machine learning-based system for detecting leishmaniasis in microscopic images. BMC infectious diseases, 22(1):48.
