Heart failure classification in echocardiograms using Deep Neural Networks
Abstract
This article presents a deep learning model based on MobileNetv4 for detecting heart failure in echocardiograms based on left ventricle ejection fraction (LVEF) estimation. The pipeline consists of two stages: a regression model predicting ventricular volume coordinates, and a classification model that computes LVEF from the predicted volumes. A 5-fold cross-validation was performed, yielding a coefficient of determination R² of 0.83 ± 0.01 (95% CI: [0.83, 0.84]) and an accuracy of 0.74 ± 0.01 (95% CI: [0.74, 0.75]).References
Ghorbani, A., Ouyang, D., Abid, A., He, B., Chen, J., Harrington, R., Liang, D., Ashley, E., and Zou, J. (2020). Deep learning interpretation of echocardiograms. NPJ digital medicine, 3(1):10.
McGill, H., McMahan, A., and Gidding, S. (2008). Preventing heart disease in the 21st century. Circulation, 117(9):1216–27.
Omerovic, S. and Jain, A. (2024). Echocardiogram. In StatPearls. StatPearls Publishing, Treasure Island (FL).
OMS (2021). Global health estimates: Leading causes of death.
O’Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks. arXiv.
Ouyang, D., He, B., Ghorbani, A., Yuan, N., Ebinger, J., Langlotz, C., Heidenreich, P., Harrington, R., Liang, D., Ashley, E., et al. (2020). Video-based ai for beat-to-beat assessment of cardiac function. Nature, 580(7802):252–6.
Paul, A. and Bhuiyan, Y. (2024). EchoTrace: A 2D echocardiography deep learning approach for left ventricular ejection fraction prediction. J. Electron. Electric. Eng.
Qin, D., Leichner, C., Delakis, M., Fornoni, M., Luo, S., Yang, F., Wang, W., Banbury, C., Ye, C., Akin, B., et al. (2024). Mobilenetv4-universal models for the mobile ecosystem. arXiv preprint arXiv:2404.10518.
McGill, H., McMahan, A., and Gidding, S. (2008). Preventing heart disease in the 21st century. Circulation, 117(9):1216–27.
Omerovic, S. and Jain, A. (2024). Echocardiogram. In StatPearls. StatPearls Publishing, Treasure Island (FL).
OMS (2021). Global health estimates: Leading causes of death.
O’Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks. arXiv.
Ouyang, D., He, B., Ghorbani, A., Yuan, N., Ebinger, J., Langlotz, C., Heidenreich, P., Harrington, R., Liang, D., Ashley, E., et al. (2020). Video-based ai for beat-to-beat assessment of cardiac function. Nature, 580(7802):252–6.
Paul, A. and Bhuiyan, Y. (2024). EchoTrace: A 2D echocardiography deep learning approach for left ventricular ejection fraction prediction. J. Electron. Electric. Eng.
Qin, D., Leichner, C., Delakis, M., Fornoni, M., Luo, S., Yang, F., Wang, W., Banbury, C., Ye, C., Akin, B., et al. (2024). Mobilenetv4-universal models for the mobile ecosystem. arXiv preprint arXiv:2404.10518.
Published
2025-06-09
How to Cite
MACIEL, Luiz Fernando Oliveira; MACHADO, Alexei Manso Correa.
Heart failure classification in echocardiograms using Deep Neural Networks. In: UNDERGRADUATE RESEARCH WORKS CONTEST - BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTHCARE (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 19-24.
ISSN 2763-8987.
DOI: https://doi.org/10.5753/sbcas_estendido.2025.6965.
