Machine Unlearning Analysis in Medical Image Classification Models
Abstract
Machine unlearning aims to remove private or sensitive data from a pre-trained model while preserving the model’s robustness. Despite recent advances, this technique has not been explored in medical image classification. This work evaluates the SalUn unlearning model by conducting experiments on the PathMNIST, OrganAMNIST, and BloodMNIST datasets. We also analyze the impact of data augmentation on the quality of unlearning. Results show that SalUn achieves performance close to full retraining, indicating an efficient solution for use in medical applications.References
Chan, H.-P., Samala, R. K., Hadjiiski, L. M., and Zhou, C. (2020). Deep learning in medical image analysis. Deep learning in medical image analysis: challenges and applications, pages 3–21.
Dang, Q.-V. (2021). Right to be forgotten in the age of machine learning. In Advances in Digital Science: ICADS 2021, pages 403–411. Springer.
Di, Z., Zhu, Z., Jia, J., Liu, J., Takhirov, Z., Jiang, B., Yao, Y., Liu, S., and Liu, Y. (2024). Label smoothing improves machine unlearning. arXiv preprint arXiv:2406.07698.
Fan, C., Liu, J., Zhang, Y., Wong, E., Wei, D., and Liu, S. (2024). Salun: Empowering machine unlearning via gradient-based weight saliency in both image classification and generation. In International Conference on Learning Representations (ICLR).
Golatkar, A., Achille, A., and Soatto, S. (2020). Eternal sunshine of the spotless net: Selective forgetting in deep networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9304–9312.
Graves, L., Nagisetty, V., and Ganesh, V. (2021). Amnesiac machine learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 11516–11524.
Hoofnagle, C. J., Van Der Sloot, B., and Borgesius, F. Z. (2019). The european union general data protection regulation: what it is and what it means. Information & Communications Technology Law, 28(1):65–98.
Jia, J., Liu, J., Ram, P., Yao, Y., Liu, G., Liu, Y., Sharma, P., and Liu, S. (2023). Model sparsity can simplify machine unlearning. Advances in Neural Information Processing Systems, 36:51584–51605.
Mumuni, A. and Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16:100258.
Wu, Z., Shen, C., and Van Den Hengel, A. (2019). Wider or deeper: Revisiting the resnet model for visual recognition. Pattern recognition, 90:119–133.
Yang, J., Shi, R., Wei, D., Liu, Z., Wang, L., Zhou, Y., Zhou, S., Bian, C., Li, L., Wang, X., et al. (2021). Medmnist: A lightweight automl benchmark for medical image analysis. [link]. Accessed: February 13, 2025.
Zhang, H., Nakamura, T., Isohara, T., and Sakurai, K. (2023). A review on machine unlearning. SN Computer Science, 4(4):337.
Dang, Q.-V. (2021). Right to be forgotten in the age of machine learning. In Advances in Digital Science: ICADS 2021, pages 403–411. Springer.
Di, Z., Zhu, Z., Jia, J., Liu, J., Takhirov, Z., Jiang, B., Yao, Y., Liu, S., and Liu, Y. (2024). Label smoothing improves machine unlearning. arXiv preprint arXiv:2406.07698.
Fan, C., Liu, J., Zhang, Y., Wong, E., Wei, D., and Liu, S. (2024). Salun: Empowering machine unlearning via gradient-based weight saliency in both image classification and generation. In International Conference on Learning Representations (ICLR).
Golatkar, A., Achille, A., and Soatto, S. (2020). Eternal sunshine of the spotless net: Selective forgetting in deep networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9304–9312.
Graves, L., Nagisetty, V., and Ganesh, V. (2021). Amnesiac machine learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 11516–11524.
Hoofnagle, C. J., Van Der Sloot, B., and Borgesius, F. Z. (2019). The european union general data protection regulation: what it is and what it means. Information & Communications Technology Law, 28(1):65–98.
Jia, J., Liu, J., Ram, P., Yao, Y., Liu, G., Liu, Y., Sharma, P., and Liu, S. (2023). Model sparsity can simplify machine unlearning. Advances in Neural Information Processing Systems, 36:51584–51605.
Mumuni, A. and Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16:100258.
Wu, Z., Shen, C., and Van Den Hengel, A. (2019). Wider or deeper: Revisiting the resnet model for visual recognition. Pattern recognition, 90:119–133.
Yang, J., Shi, R., Wei, D., Liu, Z., Wang, L., Zhou, Y., Zhou, S., Bian, C., Li, L., Wang, X., et al. (2021). Medmnist: A lightweight automl benchmark for medical image analysis. [link]. Accessed: February 13, 2025.
Zhang, H., Nakamura, T., Isohara, T., and Sakurai, K. (2023). A review on machine unlearning. SN Computer Science, 4(4):337.
Published
2025-06-09
How to Cite
FALCAO, Andreza M. C.; CORDEIRO, Filipe R..
Machine Unlearning Analysis in Medical Image Classification Models. In: UNDERGRADUATE RESEARCH WORKS CONTEST - BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTHCARE (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 43-48.
ISSN 2763-8987.
DOI: https://doi.org/10.5753/sbcas_estendido.2025.6966.
