Machine Learning in Health: A Systematic Review

  • Alessandra R. C. Padovam UNICAMP
  • Danilo Rodrigues Pereira UNICAMP
  • Romis Attux UNICAMP

Resumo


The aim of this study is to construct a taxonomy of Machine Learning (ML) techniques most commonly employed in health applications. The systematic review was performed between October 2023 and November 2024, and comprised articles published from 2013 to 2023. The search for relevant references was done on Pubmed and MEDLINE databases, and the screening articles were analysed by two reviewers independently through the Covidence platform. We identified 2,714 articles resulting in 65 health problems related to some ML technique and 8 types of learning. This research brings trends in use of ML for application in the field of medicine in general.

Referências

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 122-1128). New York: springer.

Covidence systematic review software (2024). Veritas Health Innovation, Melbourne, Australia. Available at [link]

Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2024). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: [link], accessed [23 Feb 2025].

Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 149(4), 778-789.

Harrison, J. E., Weber, S., Jakob, R., & Chute, C. G. (2021). ICD-11: an international classification of diseases for the twenty-first century. BMC medical informatics and decision making, 21, 1-10.

Higgins Jpt, et al. (2024). Cochrane Handbook for Systematic Reviews of Interventions version 6.5 (updated August 2024). Cochrane, 2024. Available from [link].

Islam, R., Sultana, A., & Islam, M. R. (2024). A comprehensive review for chronic disease prediction using machine learning algorithms. Journal of Electrical Systems and Information Technology, 11(1), 27.

Kourou, K., Exarchos, K. P., Papaloukas, C., Sakaloglou, P., Exarchos, T., & Fotiadis, D. I. (2021). Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Computational and Structural Biotechnology Journal, 19, 5546-5555.

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews, 4(1).

Quer, G., Arnaout, R., Henne, M., & Arnaout, R. (2021). Machine learning and the future of cardiovascular care: JACC state-of-the-art review. Journal of the American College of Cardiology, 77(3), 300-313.

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach (4th ed.). Pearson.

Saxena, A. (2021). Artificial intelligence and machine learning in healthcare. S. Chandra (Ed.). Singapore: Springer.

Siddiqui, M. F., Reza, A. W., & Kanesan, J. (2015). An automated and intelligent medical decision support system for brain MRI scans classification. PloS one, 10(8), e0135875.

Topol, E. (2019). Deep medicine: how artificial intelligence can make healthcare human again. Hachette UK.

Triantafyllidis, A. K., & Tsanas, A. (2019). Applications of machine learning in real-life digital health interventions: review of the literature. Journal of medical Internet research, 21(4), e12286.

World Health Organization. (n.d.). International Classification of Diseases (ICD). Retrieved from [link]
Publicado
09/06/2025
PADOVAM, Alessandra R. C.; PEREIRA, Danilo Rodrigues; ATTUX, Romis. Machine Learning in Health: A Systematic Review. In: TECNOLOGIAS ASSISTIVAS, INTELIGÊNCIA ARTIFICIAL E CIÊNCIA DE DADOS - SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 25. , 2025, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 277-286. ISSN 2763-8987. DOI: https://doi.org/10.5753/sbcas_estendido.2025.6992.